
University of California,
Irvine

Model-based Analysis of Event-driven
Distributed Real-time Embedded Systems

Dissertation

submitted in partial satisfaction of the requirements
for the degree of

Doctor of Philosophy

in Computer Science

by

Gabor Madl

Dissertation Committee:
Chancellor’s Professor Nikil D. Dutt, Chair

Professor Tony Givargis
Professor Ian G. Harris

2009

c© 2009 Gabor Madl

The dissertation of Gabor Madl
is approved and is acceptable in quality and form for

publication on microfilm and in digital formats:

Committee Chair

University of California, Irvine
2009

ii

“The higher we soar, the smaller we appear to those who cannot fly.”

Friedrich Nietzsche

iii

Table of Contents

Table of Contents iv
List of Figures . viii
List of Tables . x
List of Algorithms . xi
List of Acronyms . xii
Acknowledgements . xvi
Curriculum Vitae . xviii
Abstract of the Dissertation . xx

1 Introduction 1
1.1 Distributed Real-time Embedded Systems 2

1.1.1 Time-triggered Distributed Real-time Embedded Systems . . . 4
1.1.2 Asynchronous Event-driven Distributed Real-time Embedded

Systems . 7
1.1.3 Composing Time- and Event-driven Distributed Real-time Em-

bedded Systems . 9
1.2 Model-based Analysis of Distributed Real-time Embedded Systems . 10
1.3 Key Contributions of this Dissertation 14

2 Related Work 18
2.1 Model-based Design and Analysis of Distributed Real-time Embedded

Systems . 18
2.2 Real-time Analysis of Distributed Real-time Embedded Systems . . . 22

2.2.1 Classic Scheduling Theory . 23
2.2.2 Model Checking Non-preemptive Scheduling 23
2.2.3 Model Checking Preemptive Scheduling 24

2.3 Performance Analysis . 27
2.3.1 Static Performance Analysis Methods 27
2.3.2 Dynamic Performance Analysis Methods 29
2.3.3 Model checking methods . 30

2.4 Functional Verification of MPSoCs 31

3 Specifying Semantics 33
3.1 Domain-specific Modeling Language 33
3.2 The Semantics of “Semantics” . 35

3.2.1 Semantic Domain . 36
3.2.2 Model of Computation . 36
3.2.3 Structural Semantics . 37
3.2.4 Operational Semantics . 37
3.2.5 Denotational Semantics . 38
3.2.6 Axiomatic Semantics . 38

iv

3.3 Specifying Domain-specific Modeling Languages by Meta-modeling . . 39
3.4 Stopwatch and Timed Automata . 41

4 A Formal Semantic Domain for Distributed Real-time Embedded
Systems 43
4.1 The Alderis Domain-specific Modeling Language 44

4.1.1 Abstract Syntax . 44
4.2 Specifying the Alderis Domain-specific Modeling Language by Meta-

modeling . 47
4.3 Specifying the DRE Semantic Domain by Timed Automata 50

4.3.1 Timers . 51
4.3.2 Non-preemptable Tasks . 52
4.3.3 Preemptable Tasks . 54
4.3.4 Event Channels . 56
4.3.5 Buffers . 58
4.3.6 The Scheduler . 58
4.3.7 Modeling Constraints . 60

4.4 Specifying the DRE Semantic Domain as a Discrete Event System 61
4.4.1 Events . 61
4.4.2 Task States, Schedulers . 63

5 Real-time Model Checking of Software-Intensive Distributed
Real-time Embedded Systems 65
5.1 Problem Formulation . 67
5.2 Boeing Bold Stroke Execution Platform 69
5.3 Abstractions Based on the Threading Model 73
5.4 Non-preemptive Boeing Bold Stroke Application 75
5.5 Real-time Verification by Timed Automata Model Checking 78
5.6 Concluding Remarks . 83

6 Performance Estimation of Distributed Real-time Embedded Sys-
tems by Discrete Event Simulations 85
6.1 Problem Formulation . 87
6.2 Performance Estimation of DRE Systems by Discrete Event Simulations 89

6.2.1 Event Order Tree . 89
6.2.2 Branches in the Event Order Tree 91
6.2.3 Real-time Verification by Discrete Event Simulations 92
6.2.4 On-the-fly Detection of Branching Points in the Event Order

Tree . 95
6.3 Practical Application to Software-Intensive DRE Systems 97

6.3.1 Comparison with Random Simulations 102
6.3.2 Comparison with Timed Automata Model Checking Methods 104

6.4 Practical Application to an H.264 Decoder MPSoC Design 105
6.4.1 H.264/AVC Overview . 105
6.4.2 H.264 Decoder MPSoC Design 108

v

6.4.3 Performance Parameters for the H.264 Decoder MPSoC Design 110
6.4.4 Formal Modeling of the H.264 Decoder MPSoC Design 113
6.4.5 Performance Verification of the H.264 Decoder MPSoC Design

by DES . 115
6.5 Concluding Remarks . 116

7 Conservative Approximation Method for the Real-time Verifi-
cation of Preemptive Systems 117
7.1 Problem Formulation . 118

7.1.1 Stopwatch as a Model for a Preemptable Real-time Task . . . 118
7.1.2 Composable Stopwatch Automata as a Model for PEARSE . . 121
7.1.3 Problem Description . 123

7.2 Conservative Approximation of Integration Graphs 124
7.2.1 Mapping the TSA to TTA . 125
7.2.2 Analysis of the Timed Automaton Approximation 127
7.2.3 Language Inclusion Problem for a Single TTA/TSA Pair . . . 132
7.2.4 The Effects of Composing TTA on the Approximation 133

7.3 Practical Application . 135
7.4 Concluding remarks . 140

8 Combining Transaction-level Simulations and Model Checking
for MPSoC Verification and Performance Evaluation 142
8.1 Formal Modeling of the AMBA AHB protocol 144

8.1.1 Modeling AMBA AHB by Finite State Machines 146
8.1.2 Modeling AMBA AHB Masters 147
8.1.3 Modeling AMBA AHB Slaves 149
8.1.4 Modeling an AMBA AHB Round-robin Arbiter 151

8.2 Digital Camera MPSoC Design Alternatives 155
8.2.1 JPEG2000 Encoder Description 156
8.2.2 Description of MPSoC Design Alternatives 157

8.3 Functional Verification of AMBA-based MPSoC Designs 159
8.3.1 Ambiguity in the AMBA AHB Specification 162
8.3.2 Resolving the Ambiguity . 163

8.4 Performance Evaluation of AMBA-based MPSoC Designs 164
8.4.1 Simulation-based Evaluation 164
8.4.2 Model Checking-based Performance Evaluation 167
8.4.3 Evaluating the Performance Estimation Results 170
8.4.4 The Impact of Transaction-level Simulations and Model Check-

ing on the Accuracy of the Performance Estimates 171

9 Cross-abstraction Real-time Analysis of Bus Matrix MPSoC De-
signs 174
9.1 Networking Router MPSoC Design 179
9.2 Modeling Bus Matrix-based MPSoC Designs 182

9.2.1 Modeling the Router MPSoC using Alderis 182

vi

9.3 Functional Verification of AMBA AHB Bus Matrix MPSoC Designs . 185
9.3.1 Experiments . 188

9.4 Formal Performance Estimation by Discrete Event Simulations 189
9.4.1 Experiments . 192

9.5 Real-time Verification using Timed Automata 193
9.5.1 Experiments . 196

9.6 Comparing the Results of the Analysis Methods 196

10 Simulation-guided Model Checking: The Dream framework 198
10.1 Functionality Provided by Dream 199

10.1.1 Random Simulations . 199
10.1.2 Real-time Verification of Non-preemptive DRE Systems by Timed

Automata . 199
10.1.3 Performance Estimation and Real-time Verification by DES . 200
10.1.4 Real-time Verification of Preemptive DRE Systems by Timed

Automata . 201
10.1.5 Task Mapping Problem on a Distributed Platform by Genetic

Algorithms . 202
10.2 Design and Implementation . 204

11 Concluding Remarks and Future Work 207
11.1 Challenges in the Design of Distributed Real-time Embedded Systems 208
11.2 Key Technical Contributions of this Dissertation 209
11.3 Future Directions . 212

vii

List of Figures

1.1 Model-based Analysis of Distributed Real-time Embedded Systems . 11
1.2 Key Technical Contributions of this Dissertation 15

3.1 Domain-specific Modeling Language 35
3.2 Specifying the Alderis DSML using Meta-modeling 40

4.1 Example DRE Model . 47
4.2 Meta-model for Alderis specified in GME 48
4.3 Uppaal Timed Automaton Model for a Timer 52
4.4 Uppaal Timed Automaton Model for a Non-preemptable Task . . . 53
4.5 Uppaal Timed Automaton Model for a Preemptable Task 55
4.6 Uppaal Timed Automaton Model for a Channel 57
4.7 Uppaal Timed Automaton Model for a Buffer 58
4.8 Uppaal Timed Automaton Model for a Scheduler 59
4.9 Composing Discrete Event Models using Events - Partial Representa-

tion of the DRE Example Shown in Figure 4.1 64

5.1 Motivating Example for a Non-WCET Deadline Miss 68
5.2 The Boeing Bold Stroke Execution Platform 70
5.3 The Bold Stroke Application Model 76
5.4 The Alderis Model of the Real-time CORBA Avionics Application . 77
5.5 Uppaal Timed Automata Models for the Avionics Application Shown

in Figure 5.4 (Part 1/2) . 80
5.6 Uppaal Timed Automata Models for the Avionics Application Shown

in Figure 5.4 (Part 2/2) . 81

6.1 Execution Traces of the DRE Model Shown in Figure 4.1 88
6.2 The Event Order Tree of the DRE Example in Figure 4.1 using the

Parameters in Table 6.1 . 90
6.3 Mission-critical Avionics DRE System Case Study 99
6.4 H.264 Decoder Algorithm . 106
6.5 H.264 Decoder MPSoC Architecture 108
6.6 Formal Modeling of the H.264 Decoder MPSoC Design 114

7.1 Task Stopwatch Automaton (TSA) – Model of a Preemptable Real-
time Task . 119

7.2 Clock Constraints on Stopwatches for Schedulability 121
7.3 Motivating Example for a Non-WCET Deadline Miss 123
7.4 Task Timed Automaton (TTA) – Approximating a Preemptable Real-

time Task . 125
7.5 Real-time CORBA Avionics Application 135
7.6 Uppaal Timed Automata Models for the Avionics Application Shown

in Figure 7.5 (Part 1/2) . 137

viii

7.7 Uppaal Timed Automata Models for the Avionics Application Shown
in Figure 7.5 (Part 2/2) . 138

7.8 Model Checking Time . 139
7.9 Model Checking Memory Consumption 140

8.1 Finite State Machine Model of an AMBA AHB Master 148
8.2 Finite State Machine Model of an AMBA AHB Slave 150
8.3 JPEG2000 Encoder Block Diagram 156
8.4 Design Alternatives of the Digital Camera Case Study using the JPEG2000

Encoder . 158
8.5 Ambiguity in the AMBA AHB Specification 162
8.6 Performance Estimation of MPSoC Design Alternatives Shown in Fig-

ure 8.4 . 171
8.7 Communication Overhead Estimates by Simulations and Model Check-

ing . 172

9.1 The Carta Model-based Analysis Framework 175
9.2 Networking Router MPSoC HW Design 179
9.3 Networking Router MPSoC SW Design 181
9.4 Alderis Model of the Router MPSoC in the GME Tool 183
9.5 A Partial View of the Event Order Tree for the Example Shown in

Figure 9.4 using the Parameters in Table 9.1 191
9.6 Partial Timed Automata Model of the Networking Router MPSoC De-

sign Shown in Figure 9.4 in Uppaal 195
9.7 Analysis Time and Memory Consumption for the Networking Router

Case Study . 197

10.1 The Modular Dream Design . 204

ix

List of Tables

5.1 Parameters for the Bold Stroke Application Shown in Figure 5.4 . . . 79

6.1 Timing Information for the DRE Model Shown in Figure 4.1 88
6.2 Timer and Channel Parameters for the Real-time CORBA Case Study

Shown in Figure 6.3 . 100
6.3 Task Parameters for the Real-time CORBA Case Study Shown in Fig-

ure 6.3 . 101
6.4 Cycle Estimates for Processing 1 Frame by HW/SW Blocks in Figure 6.5 111
6.5 Execution Time Estimates for Processing 1 Frame by HW/SW Blocks

(in µs) . 112

7.1 Parameters for the Real-time CORBA Case Study Shown in Figure 7.5 136

8.1 JPEG2000 Encoding SystemC Simulation Results for Design 1 Shown
in Figure 8.4 using 64×64 pixel Tiles (for a single tile). Scale: cycles . 165

8.2 JPEG2000 Encoding SystemC Simulation Results for Design 2 Shown
in Figure 8.4 using 64×64 pixel Tiles (for a single tile). Scale: cycles . 165

8.3 JPEG2000 Encoding SystemC Simulation Results for Design 3 Shown
in Figure 8.4 using 64×64 pixel Tiles (for a single tile). Scale: cycles . 165

8.4 JPEG2000 Encoding SystemC Simulation Results for Design 1 Shown
in Figure 8.4 using 128×128 pixel Tiles (for a single tile). Scale: cycles 166

8.5 JPEG2000 Encoding SystemC Simulation Results for Design 2 Shown
in Figure 8.4 using 128×128 pixel Tiles (for a single tile). Scale: cycles 166

8.6 JPEG2000 Encoding SystemC Simulation Results for Design 3 Shown
in Figure 8.4 using 128×128 pixel Tiles (for a single tile). Scale: cycles 166

8.7 Average Throughput of the JPEG2000 Encoders SystemC Simulation
Results using 64×64 pixel Tiles. Scale: tile/sec 168

8.8 Average Throughput of the JPEG2000 Encoders SystemC Simulation
Results using 128×128 pixel Tiles. Scale: tile/sec 168

8.9 Parameters used for Performance Evaluation by Model Checking. Scale:
104 cycles . 168

8.10 Worst Case Bounds on the End-to-end Computation Times of the De-
signs Shown in Figure 8.4 obtained using Model Checking. Scale: cycles 168

9.1 Parameters for the Networking Router MPSoC Design Shown in Fig-
ure 9.4 . 190

x

List of Algorithms

6.1 Obtaining and Enumerating the Event Order Tree by Discrete Event
Simulations . 96

6.2 function discrete event simulation () 98
8.1 Partial NuSMV Finite State Machine Model for an AMBA AHB Master 149
8.2 Partial NuSMV Finite State Machine Model for an AMBA AHB Slave 151
9.1 NuSMV Specification of an AMBA AHB Arbiter Managing a Single

Master and Slave . 186
10.1 Heuristic for the Task Mapping Problem 203

xi

List of Acronyms

ABS Anti-lock Braking System.

ACE Adaptive Communication Environment.

ADL Architecture Description Language.

AEDRE Asynchronous Event-driven Distributed Real-time Embedded.

AIRES Automatic Integration of Reusable Embedded Software.

Alderis Analysis Language for Distributed, Embedded, and Real-time Systems.

AMBA AHB ARM Advanced Microcontroller Bus Architecture Advanced
High-speed Bus.

AMI Asynchronous Method Invocation.

ASIC Application-specific Integrated Circuit.

AVC Advanced Video Coding.

BCET Best Case Execution Time.

BDD Binary Decision Diagram.

BFS Breadth First Search.

BPC Bit Plane Coder.

CABAC Context-Adaptive Binary Arithmetic Coding.

Carta Cross-abstraction Real-time Analysis.

CAVLC Context-Adaptive Variable Length Coding.

CCATB Cycle Count Accurate At Transaction Boundaries.

CCM CORBA Component Model.

CF Context Formatter.

CORBA Common Object Request Broker Architecture.

CoSMIC Component Synthesis using Model Integrated Computing.

COTS Commercial off-the-shelf.

CPS Cyber-physical Systems.

CPU Central Processing Unit.

xii

CTL Computational Tree Logic.

DCT Discrete Cosine Transform.

DE Discrete Event.

DES Discrete Event Simulation.

DFS Depth First Search.

DMA Direct Memory Access.

DQ/IT Discrete Quantization/Inverse Transform.

DRE Distributed Real-time Embedded.

Dream Distributed Real-time Embedded Analysis Method.

DSM Domain-specific Model.

DSML Domain-specific Modeling Language.

DVFS Dynamic Voltage Frequency Scaling.

DWT Discrete Wavelet Transform.

EBCOT Embedded Block Coding with Optimal Truncation.

ECU Engine Control Unit.

EDF Earliest Deadline First.

EJB Enterprise JavaBeans.

EOT Event Order Tree.

ESL Electronic System Level.

ESP Electronic Stability Programme.

FIFO First In First Out.

FSM Finite State Machine.

GME Generic Modeling Environment.

GPS Global Positioning System.

GReAT Graph Rewriting and Transformation.

HA Hybrid Automata.

ICT Irreversible Color Transform.

xiii

IDE Integrated Development Environment.

IP Intellectual Property.

LCD Liquid Crystal Display.

LET Logical Execution Time.

LTL Linear Time Logic.

MB Macroblock.

MCT Multi-Component Transform.

MDA Model-driven Architecture.

MIC Model-integrated Computing.

MoC Model of Computation.

MPSoC Multi-processor System-on-Chip.

MQ-Coder Arithmetic Coder.

OCL Object Constraint Language.

OMG Object Management Group.

ORB Object Request Broker.

OSATE Open Source AADL Tool Environment.

PCI Peripheral Component Interconnect.

PEARSE Preemptive Event-driven Asynchronous Real-time Systems with Execution
Intervals.

POA Portable Object Adapter.

PTIDES Programming Temporally Integrated Distributed Embedded Systems.

QCIF Quarter Common Intermediate Format.

QoS Quality of Service.

RCPSP Resource Constrained Project Scheduling Problem.

RCT Reversible Color Transform.

RMA Rate Monotonic Analysis.

ROI Region Of Interest.

xiv

RTL Register-Transfer Level.

SA Stopwatch Automata.

SAE AADL Society of Automotive Engineers: Architecture Analysis & Design
Language.

SCADA Supervisory Control and Data Acquisition.

TA Timed Automata.

TAO The ACE ORB.

TCTL Timed Computational Tree Logic.

TDMA Time Division Multiple Access.

TSA Task Stopwatch Automaton.

TTA Task Timed Automaton.

TTDRE Time-triggered Distributed Real-time Embedded.

UART Universal Asynchronous Receiver/Transmitter.

UML Unified Modeling Language.

VEST Virginia Embedded Systems Toolkit.

VIATRA VIsual Automated model TRAnsformations.

WCET Worst Case Execution Time.

XML Extensible Markup Language.

xv

Acknowledgements

I would like to express my gratitude to all the people who supported me turning

this work into reality. First and foremost, to my advisor, Professor Nikil D. Dutt. I

thank him for the respect that he so greatfully had shown towards me. His guidance

and support was crucial in developing this dissertation and myself. I am grateful

for the freedom that he has granted me to pursue my interests. Professor Dutt had

shown me the true meaning of mentoring, and I cannot thank him enough for the

time and effort he spent on my education.

Second, I would like to express my gratitude to my past mentor, Professor Sherif

Abdelwahed for showing me the beauty of science. I thank him for his endless patience

and guidance developing this work that once seemed impossible. I thank him for his

faith in me, and for standing by me when I needed it most.

The research in this work was sponsored by the National Science Foundation

grants CCR-0225610, ACI-0204028, CNS-0615438, CNS-0613971, a grant by the Cen-

ter for Pervasive Communications and Computation, and funding by Fujitsu Labora-

tories of America. Financial support is graciously acknowledged.

I would like to thank all the great researchers in the CECS lab at UC Irvine who

have directly or indirectly contributed to my research. In particular, I thank Sudeep

Pasricha, Luis A. D. Bathen, Kyoungwoo Lee, Minyoung Kim, Qiang Zhu, Ilya Is-

senin, Shireesh Verma, Radu Cornea, Jayram M. Nageshwaran, Arup Chakraborty,

Jesse Dannenbring, Jeff Furlong for interesting discussions and their contributions. I

am grateful to Professor Tony Givargis and Professor Ian G. Harris for their guidance

in developing this dissertation, and to Professor Nalini Venkatasubramanian, Profes-

sor Fadi J. Kurdahi, and Professor Ahmed M. Eltawil for the interesting discussions

and motivating my research. I am also thankful to Melanie Sanders, Melanie Kilian,

and Grace Wu for their help in administrative matters.

xvi

I thank the researchers and engineers at Vanderbilt University who contributed

to my research. In particular, I am grateful to Professor Douglas C. Schmidt and the

DOC group for motivating my research interests in distributed real-time embedded

systems, and for his support. Professor Schmidt has demonstrated to me that hard

work and discipline are essential for success. I thank Professor Janos Sztipanovits

for introducing me to the semantics of model-based design, and strengthening my

confidence to stand on my own feet. Without his help, I would not have taken the

leap ahead. I am grateful to Professor Jonathan Sprinkle, Professor Brandon Eames,

Professor Miklós Maróti, Professor Ákos Lédeczi, Professor Gabor Karsai, Andrew

D. Dixon, Matthew J. Emerson, Kai Chen, Ethan Jackson, Stoyan Paunov, János

Sallai, György Balogh, Branislav Kusy and Sebestyén Dóra for shaping my research.

I am also grateful to all my friends for all the great times spent together.

I am grateful to Professor András Pataricza and Professor István Majzik from

the Budapest University of Technology and Economics for their mentoring and help

during my Master’s course work.

I thank the great engineers who influenced my research during my work and

internships. In particular, I am grateful to Balázs Gábor Józsa from Loxon Solutions,

Peter Grun and Chulho Shin from ARM, Praveen K. Murthy, Wei-Peng Chen and

Sreeranga P. Rajan from Fujitsu Laboratories of America, and Zhenyu (Victor) Liu

from Google, among others.

I am especially grateful to my family for their love and unconditional support.

There are no words that would suffice to thank my parents for their help and sup-

port. I thank my fiancée, Andreia S. Dias for standing by me during the hard times,

and enabling me to pursue my dreams. Finally, I thank the governator, Arnold

Schwarzenegger, for the bragging rights for having his signature on my diploma.

xvii

Curriculum Vitae

Gabor Madl

Education

2009 Ph.D. in Computer Science, University of California, Irvine, USA
2005 M.Sc. in Computer Science, Vanderbilt University, USA
2002 M.Sc. in Computer Engineering, Budapest University of Technology and

Economics, Hungary

Research & Industry Experience

2005 - 2009 Graduate Researcher University of California, Irvine, USA
2008 Software Engineer Intern Google, USA
2007 Intern Fujitsu Laboratories of America, USA
2005 Intern ARM, USA
2003 - 2005 Research Assistant Vanderbilt University, USA
1999 - 2002 Software Engineer Loxon Solutions, Hungary

Award

2008 The ACM SIGBED/SIGSOFT Frank Anger Memorial Award.

Selected Publications

1. Gabor Madl, Sudeep Pasricha, Qiang Zhu, Luis Angel D. Bathen, Nikil Dutt:
Combining Transaction-level Simulations and Model Checking for MPSoC Ver-
ification and Performance Evaluation, submitted to ACM Transactions on De-
sign Automation of Electronic Systems.

2. Gabor Madl, Sudeep Pasricha, Nikil Dutt, Sherif Abdelwahed: Cross-abstraction
Functional Verification and Performance Analysis of Chip Multiprocessor De-
signs, submitted to IEEE Transactions on Industrial Informatics.

3. Gabor Madl, Sherif Abdelwahed, Douglas C. Schmidt: Verifying Distributed
Real-time Properties of Embedded Systems via Graph Transformations and
Model Checking, Real-Time Systems, Special Issue: Invited Papers from the
25th IEEE International Real-Time Systems Symposium, Volume 33, Numbers
1–3, Pages 77–100, July 2006.

4. Gabor Madl, Nikil Dutt, Sherif Abdelwahed: A Conservative Approximation
Method for the Verification of Preemptive Scheduling using Timed Automata,
In Proceedings of the 15th IEEE Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), Pages 255-264, 2009.

xviii

5. Gabor Madl, Nikil Dutt: Real-time Analysis of Resource-Constrained Distributed
Systems by Simulation-Guided Model Checking, Ph.D. Forum, the 28th IEEE
International Real-Time Systems Symposium (RTSS), 2007.

6. Gabor Madl, Nikil Dutt, Sherif Abdelwahed: Performance Estimation of Dis-
tributed Real-time Embedded Systems by Discrete Event Simulations, In Pro-
ceedings of EMSOFT, Pages 183–192, 2007.

7. Gabor Madl, Sudeep Pasricha, Qiang Zhu, Luis Angel D. Bathen, Nikil Dutt:
Formal Performance Evaluation of AMBA-based System-on-Chip Designs, In
Proceedings of EMSOFT, Pages 311–320, 2006.

8. Gabor Madl, Sherif Abdelwahed: Model-based Analysis of Distributed Real-time
Embedded System Composition, In Proceedings of EMSOFT, Pages 371–374,
2005.

9. Gabor Madl, Sherif Abdelwahed, Gabor Karsai: Automatic Verification of Comp-
onent-Based Real-Time CORBA Applications, In Proceedings of the 25th IEEE
International Real-Time Systems Symposium (RTSS), Pages 231–240, 2004.

10. Gabor Madl, Nikil Dutt: Domain-specific Modeling of Power Aware Distributed
Real-time Embedded Systems, Proceedings of the 6th Workshop on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS), Pages
59–68, 2006.

11. Chulho Shin, Peter Grun, Nizar Romdhane, Christopher Lennard, Gabor Madl,
Sudeep Pasricha, Nikil Dutt, Mark Noll: Enabling heterogeneous cycle-based
and event-driven simulation in a design flow integrated using the SPIRIT con-
sortium specifications, Design Automation for Embedded Systems, Volume 11,
Numbers 2-3, September 2007.

12. Dror G. Feitelson, Tokunbo O. S. Adeshiyan, Daniel Balasubramanian, Yoav
Etsion, Gabor Madl, Esteban P. Osses, Sameer Singh, Karlkim Suwanmongkol,
Charlie Xie, and Stephen R. Schach: Fine-Grain Analysis of Common Coupling
and its Application to a Linux Case Study, Journal of Systems and Software,
Volume 80, Issue 8, Pages 1239–1255, 2007.

13. Stephen R. Schach, Tokunbo O. S. Adeshiyan, Daniel Balasubramanian, Gabor
Madl, Esteban P. Osses, Sameer Singh, Karlkim Suwanmongkol, Minhui Xie,
and Dror G. Feitelson: Common Coupling and Pointer Variables, with Appli-
cation to a Linux Case Study, Software Quality Journal, Volume 15, Number 1,
Pages 99–113, 2007.

14. Peter Grun, Chulho Shin, Chris Baxter, Christopher Lennard, Mark Noll, Ga-
bor Madl: Integrating a multi-vendor ESL-to-silicon design flow using SPIRIT,
IP-SoC 2005.

xix

Abstract of the Dissertation

Model-based Analysis of Event-driven
Distributed Real-time Embedded Systems

By

Gabor Madl

Doctor of Philosophy in Computer Science

University of California, Irvine, 2009

Chancellor’s Professor Nikil D. Dutt, Chair

As embedded systems become increasingly networked, and interact with the phys-

ical world, Distributed Real-time Embedded (DRE) systems emerge. DRE systems

range from small-scale Multi-processor Systems-on-Chip (MPSoCs) operating in re-

source constrained environments such as cell phone platforms, medical devices and

sensor networks all the way to large-scale software-intensive systems of systems used

in avionics, ship computing environments, and in supervisory control and data acqui-

sition systems managing regional power grids.

This dissertation focuses on the model-based analysis of event-driven DRE systems.

Event-driven DRE systems are based on a reactive communication paradigm, where

the execution of tasks is triggered asynchronously, invoked by external events, inter-

rupts, or by other tasks. Events can also express time, providing a common semantic

domain for the compositional analysis of time- and event-driven DRE systems.

Key technical contributions of this dissertation are (1) the specification of a formal

semantic domain for DRE systems, (2) a model checking method for the real-time

verification of non-preemptive DRE systems by timed automata, (3) a performance

xx

estimation method for DRE systems by discrete event simulations, (4) a conservative

approximation method for the verification of preemptive event-driven asynchronous

DRE systems by timed automata, (5) a method for the functional verification and

performance estimation of MPSoCs built on an industry standard MPSoC interconnect

protocol, and (6) a cross-abstraction real-time analysis method for MPSoC designs

utilizing bus matrix interconnects.

The novelty of our approach lies in combining formal methods and symbolic sim-

ulations for the system-level evaluation of DRE designs early in the design flow, and

utilizing multiple abstractions to trade off analysis accuracy in scalability.

We implemented the proposed analysis methods in the open-source Distributed

Real-time Embedded Analysis Method (Dream) framework for the model-based real-

time verification and performance estimation of DRE systems. Dream focuses on the

practical application of formal analysis methods to automate the verification, de-

velopment, configuration, and integration of event-driven DRE systems. Dream is

available for download at http://dre.sourceforge.net. We applied the proposed

design flow to the domain of software-intensive mission-critical avionics DRE applica-

tions, and the domain of multimedia MPSoCs.

xxi

http://dre.sourceforge.net

Chapter 1

Introduction

Technological advances have had a major impact on our lives in the past few decades.

We have witnessed the rise of the personal computer, have experienced the birth of

the Internet, the emergence of online shopping, and have adopted e-mails and social

networks to keep in touch with each other. There have been several crucial technology

breakthroughs that allowed this “information revolution” that may not have been

obvious to the casual observer. Advances in semiconductor technology provided ever

faster and smaller microchips, satisfying the demand for growing computation power

needed to build the necessary infrastructure to run the Internet. Optical cables, high-

speed routers, and more recently, wireless communication were developed to keep up

with the growing need for low latency, high bandwidth, mobile access points.

Innovation, however, does not stop at the Internet. Computers permeated not

just communication, but nearly every aspect of our lives; an average car now comes

equipped with more than a dozen processors, and high-level models may contain 5–

6 times as many, managing not only the correct operation of the vehicle, but even

correcting driver mistakes as electronic driving assist systems. Such processors and

computation platforms are referred to as embedded systems. Embedded systems are

often built with a special purpose or application area, and need to maintain an active

interaction with their environment.

The use of embedded systems in avionics is even more widespread; fly-by-wire

systems give total control to the pilots, where no mechanical link exists between the

cockpit and the control mechanisms on the wings of the aircraft. Instead, electronic

signals are sent to actuators that control the ailerons, elevators, and flaps with forces

and precision that a human using mechanical links is incapable of.

1

Modern health care would be nearly unimaginable without the widespread use

of embedded systems for diagnosis, monitoring, and even medicine delivery. Sensor

networks are now beginning to be deployed to monitor health signals, production

environments, buildings, traffic, and hundreds of other areas, providing a way for a

more active interaction with the physical environment.

We increasingly rely on embedded technology even to store and prepare our food;

“smart” refrigerators, high-end programmable fireplaces, microwave ovens, and even

temperature monitoring devices are now widely used in a well-equipped kitchens.

Grilling with friends in the backyard, we might not realize that we may have more

computation power in our pockets – such as cell phones, watches, PDAs, MP3 players

– than well-equipped computer labs just a few decades ago.

Cell phones have morphed into mobile computation platforms, that serve as cal-

endars, digital cameras, platforms for e-mail and real-time chat with friends and

colleagues, multimedia devices that store the whole library of our favorite songs, play

our favorite video clips from the Internet, and can even prove to be formidable oppo-

nents in games, providing rich services that we occasionally interrupt with a phone

call.

1.1 Distributed Real-time Embedded Systems

As embedded systems become increasingly networked, and interact with the physical

world, Distributed Real-time Embedded (DRE) systems emerge. DRE systems range

from small-scale Multi-processor Systems-on-Chip (MPSoCs) operating in resource-

constrained environments such as cell phone platforms, medical devices and sen-

sor networks all the way to large-scale software-intensive systems of systems used

in avionics, ship computing environments, and in Supervisory Control and Data

Acquisition (SCADA) systems managing regional power grids.

2

DRE systems provide the platform for the implementation of Cyber-physical Systems

(CPS), that increasingly run in open environments, in less predictable conditions than

previous generations of real-time and embedded systems that are specialized for spe-

cific application domains. DRE systems provide a highly adaptive and flexible infras-

tructure for reusable resource management services, thereby providing a platform for

the implementation of CPS.

Component-based design is an emerging paradigm for the engineering of complex

high-availability DRE systems. Components represent reusable services, which can be

configured and composed together to provide some functionality. Components provide

an intuitive way to reuse proven designs and implementation in DRE systems, shifting

the focus from development by construction to a build-by-composition methodology,

where functionality is provided by the composition of verified and tested components.

Components have been successfully applied to both Quality of Service (QoS)-aware

middleware [11] and hardware design [4]. In the software context, component middle-

ware defines platform capabilities, and tools for specifying, implementing, deploying,

and configuring components [78], and publish/subscribe services [41] that exchange

messages between components. Components, in turn, are units of implementation,

reuse, and composition that expose named interfaces called ports, which are connec-

tion points that components use to collaborate with each other. Component mid-

dleware helps simplify the development and validation of DRE systems by providing

reusable services, and optimizations that support their functional, and QoS needs

more effectively than conventional ad hoc software implementations.

In the hardware context, a component-based abstraction is a natural fit for MP-

SoC design, where correct-by-construction engineering is an economic necessity. In the

MPSoC domain, bus interconnects and protocols are well-established [82], and services

are implemented by synthesizing the communication subsystem [83] to integrate het-

erogeneous components on a common platform in a manner that respects key design

3

constraints, such as real-time performance, throughput, power consumption, area and

temperature constraints.

We can group DRE systems in two major categories; Time-triggered Distributed

Real-time Embedded (TTDRE) systems and Asynchronous Event-driven Distributed

Real-time Embedded (AEDRE) systems. In the following subsections we describe the

characteristics used for the categorization, and discuss key properties, application

domain, and differences between the two categories.

1.1.1 Time-triggered Distributed Real-time Embedded Systems

TTDRE systems extend the concepts of the time-triggered architecture [58] to dis-

tributed and embedded systems. In TTDRE systems time in distributed components

is synchronized to a global clock, and the execution of tasks is triggered by the clock.

By separating the invocation of tasks from their activation, TTDRE systems achieve

deterministic time behavior; by synchronizing the start of execution of tasks with the

global clock designers achieve a high degree of predictability, and are able to express

which tasks are allowed to execute at any point in time.

TTDRE systems provide an abstraction that allows designers to utilize the concept

of Logical Execution Time (LET) [44], thereby creating an abstraction supporting

deterministic time behavior. Logical execution time specifies a task’s execution time

as a constant c ∈ R≥0. The activation time of the task ta ∈ R≥0 is tied to a specific

valuation of the global clock, and the output of the task is available at ta +c time. By

enforcing the constraint that none of the task’s dependents may start their execution

before ta+c, we ensure that all the task’s dependents have access to the correct output.

Asynchronous activation is not allowed; should the task finish earlier than ta + c,

its dependents still have to wait until they are activated by the global clock at time

tx ∈ R≥0, ta+c ≤ tx. While this approach has the undesired effect that it may result in

tasks idling simply because they have not been activated yet, it also has the advantage

4

that it turns a task’s execution time to constant for analysis purposes. Constant c

is typically overestimated to avoid tasks from finishing after their deadline, making

the idle time relatively long and the system inefficient. Constant c acts as the logical

execution time; regardless of whether the task finished its execution faster or slower,

designers are able to treat its execution as constant, resulting in deterministic time

behavior, better predictability and greatly improved analysis performance. While

time-triggered activation of tasks and logical execution time often appear together,

they are different concepts, even though both aim to achieve deterministic timed

behavior.

TTDRE systems perform very well regarding the real-time aspect of DRE systems,

but have some disadvantages when considering distributed or resource-constrained

embedded systems. Advantages of TTDRE systems include:

• Deterministic timed behavior: time-triggered tasks utilizing the concept of logi-

cal execution time provide a design and analysis abstraction where designers can

specify with confidence which tasks are executing at what time. The execution

order of tasks is fixed, and the execution of TTDRE systems is predictable, and

therefore TTDRE systems can be efficiently analyzed by static analysis methods.

• Improved analysis performance and scalability: due to the deterministic behav-

ior, analysis is greatly simplified. The execution order and activation times are

fixed, therefore a single simulation of the TTDRE system can verify the satisfi-

ability of all time-constraints.

Disadvantages of TTDRE systems include:

• Global synchrony needs to be enforced on a distributed platform: this problem

becomes more significant as the scale of the system grows. The natural drift

between clocks in distributed systems results in increasing loss of accuracy. To

enforce global synchrony, TTDRE systems periodically need to perform global

5

time synchronization, that gets harder as distances between components in-

crease. Practical TTDRE systems generally have limited size; such as Anti-lock

Braking System (ABS) and Electronic Stability Programme (ESP) and Engine

Control Unit (ECU) systems. Increasing the scale of TTDRE systems to physi-

cally more diverse platforms, such as web services, shipboard computing, SCADA

systems, telecommunications is a very challenging task. In some cases the scale

of TTDRE systems is improved by utilizing the Global Positioning System (GPS)

for time synchronization.

• Higher cost of implementation: TTDRE systems are less widespread than AEDRE

systems, and therefore suffer in comparison to AEDRE systems when one consid-

ers the degree of reusability. Open-source software provided us with Commercial

off-the-shelf (COTS) real-time operating systems such as real-time Linux, mid-

dleware such as Common Object Request Broker Architecture (CORBA), open-

source web servers, software radio etc. There are very few results that TTDRE

developers may reuse in their design. In the automotive domain there are some

standards for time-triggered communication buses such as Flexray or CAN bus,

but the implementation of TTDRE systems often resembles a build-from-scratch

approach, leading to longer development times. Designers need to be famil-

iar with the concepts of TTDRE implementations, leading to more expensive

workforce. The extra costs can often be justified only in the domain of mission-

critical computing.

• Limited extensibility: once a TTDRE system is implemented, it becomes chal-

lenging to extend it. Designers cannot take the freedom to influence the time

behavior without considering its implications on the overall schedulability of the

system. Adding a piece of extra code to a component may increase its execution

time behind the logical execution time, that requires re-evaluating the whole

6

scheduling policy of the TTDRE implementation. Extending a TTDRE system

will in most cases involve a complete redesign of the task activations to adhere

to schedulability constraints.

• Sub-optimal utilization due to resources “wasted” waiting for the global clock

tick: in TTDRE systems tasks are often forced to be idle. When a task finished

earlier than its logical execution time, slack time occurs. Slack times are gener-

ally small in duration, but appear very frequently, leading to under-utilization

of the resources. While low-priority tasks may execute in slack times, imple-

menting such extensions to a mission-critical system is very challenging.

• Decreased energy efficiency due to low utilization: since the utilization of TTDRE

systems is sub-optimal, energy consumption suffers significantly. Advanced

power management techniques such as Dynamic Voltage Frequency Scaling

(DVFS) have limited efficiency in TTDRE systems, as manipulating the per-

formance of the underlying processor has implications on the timing behavior

of the system.

1.1.2 Asynchronous Event-driven Distributed Real-time Embedded

Systems

The vast majority of DRE systems fall in the category of AEDRE systems. AEDRE

systems are based on a reactive, event-driven communication paradigm, where the

execution of tasks is triggered asynchronously, depending on when they are invoked

by external events, or other tasks. Event-driven systems provide a natural abstraction

for DRE systems, as they closely resemble biological systems; whenever external events

occur, the reaction follows as soon as possible.

The time behavior of AEDRE systems is inherently non-deterministic; the execution

times of tasks depend on a myriad of factors, including utilization, caching, and even

7

the actual input data. For example, image compression performance may vary based

on how dark or detailed the image is. Since AEDRE systems are built on asynchronous

event-based triggering; whenever a task finishes its execution, its dependents are

enabled for execution. Therefore, non-deterministic execution times of tasks result

in non-deterministic triggering, and even execution order of the tasks. Although the

increased degree of non-determinism results in worse analysis performance compared

to TTDRE systems, the implementation of AEDRE systems is generally less costly.

Advantages of AEDRE systems include:

• Improved utilization: unlike TTDRE systems, AEDRE systems generally do not

require global synchronization, resulting in less complex implementation, and

more efficient use of resources.

• Lower cost of implementation: most production DRE systems are predominantly

AEDRE systems. Designers have a wide range of options to reuse existing COTS

frameworks, including operating systems, middleware, databases, web servers

etc. Most distributed software frameworks also follow an event-driven paradigm.

AEDRE systems often have the advantage of cost due to the increased reuse of

existing frameworks and paradigms.

• Easier extensibility: extending tasks may be as easy as extending the implemen-

tation of functions/classes. Component-based middleware and object-oriented

software libraries can be readily integrated into AEDRE systems. However, the

resulting code still needs to be checked for real-time properties.

• Improved utilization of resources: AEDRE systems do not face the problem of

slack times, as tasks may start as soon as resources are available, potentially

resulting in faster response times, as well as higher throughput.

• Improved energy consumption: the event-driven communication model provides

a good match for advanced power management techniques such as DVFS. Nearly

8

all software written for cell phones, mobile platforms, or MPSoCs follows an

event-driven communication model due to its improved energy efficiency.

Disadvantages of AEDRE systems include:

• Non-deterministic timed behavior: the execution time of tasks in AEDRE sys-

tems is non-deterministic in general, as a result of data-dependent processing,

memory management, caching, congestions on communication buses etc. Non-

deterministic execution times and the asynchronous event-driven activation of

tasks results in the non-deterministic execution order of tasks, that is less pre-

dictable than TTDRE systems.

• Decreased analysis performance and scalability: analysis performance is signifi-

cantly slower than in the case of TTDRE systems, as sources of non-determinism

need to be enumerated for real-time verification. Verifying large-scale AEDRE

systems is a challenging task, and requires significant effort and cost.

1.1.3 Composing Time- and Event-driven Distributed Real-time

Embedded Systems

DRE systems are increasingly complex and diverse, and the question whether AEDRE

or TTDRE systems should be used depends on the application domain, and key design

constraints.

In most heterogeneous DRE systems, AEDRE and TTDRE systems are used simulta-

neously; critical functionality may be provided by time-triggered components, while

non-critical functionality may be provided by event-driven components.

The composition of time- and event-driven systems is a significant challenge that

may have significant impact on the design of modern DRE systems. Improved inter-

action between event-driven and time-triggered components may have many positive

effects:

9

• Improved fault-tolerance: event-driven systems may take over some of the func-

tionalities of mission-critical time-triggered systems in case of a failure. For

example, microchips in a multi-media or navigation system may take over crit-

ical functionalities of a car in case of an emergency.

• Dynamic adaptation based on new information: ad-hoc mobile networks be-

tween pedestrians or cars may provide information that can be used for adap-

tation. For example, in case of an icy road or accident, information may be

transmitted to cars that may be used to configure the engine, brakes, or sus-

pension for the heightened risk.

The composition of time- and event-driven systems may provide designers with

the option to design systems that have the advantages of both AEDRE and TTDRE

systems, thus leading to greater design freedom and flexibility. Developing analysis

methods for AEDRE systems, however, remains a key challenge.

This dissertation focuses on the model-based analysis of AEDRE systems. AEDRE

systems are not only more widely used that TTDRE systems, but can also provide a

common semantic domain for the analysis of TTDRE systems. Events can also express

time, and can capture the composition of time- and event-driven DRE systems. By

providing methods for the formal analysis of AEDRE systems, we bridge the gap be-

tween time- and event-driven DRE systems, enabling the use of compositional analysis

methods.

1.2 Model-based Analysis of Distributed Real-time Embedded

Systems

Developing a DRE system that satisfies multiple QoS properties is a complex constraint-

satisfaction problem. To ensure optimal QoS support in practical applications, devel-

10

Figure 1.1: Model-based Analysis of Distributed Real-time Embedded Systems

opers often face hard or even undecidable problems. Despite recent advances in

embedded systems’ analysis and abstraction techniques the generic verification of

production-scale DRE systems is largely unsolved.

We propose a model-based analysis method for the verification and dynamic per-

formance estimation of DRE systems using the concept of platform-based design [10]

and Model-integrated Computing (MIC) [94], as shown in Figure 1.1. Domain-specific

Modeling Languages (DSMLs) play an essential role in the design and analysis process,

and can also be used to synthesize executable code, simulations, or documentation.

Designing an application that satisfies multiple QoS properties is a multi-step pro-

cess in which the Domain-specific Model (DSM) is continually evolved until the under-

lying analysis frameworks verifies that the QoS properties are satisfied. This evolution

is performed by DRE system designers based on the feedback from the analysis frame-

11

work. The goal of the analysis is to aid DRE system development by choosing feasible

design alternatives.

The design flow starts with the DSM, a high-level specification that captures key

properties of the design, such as its structure, behavior, environment, and key con-

straints that it has to satisfy. The domain-specific model can be expressed in several

ways, such as an Architecture Description Language (ADL), textual specification,

timing diagrams, meta-modeling, or other visual methods.

The DSM is then mapped to a formal Discrete Event (DE) semantic domain, that

provides an executable formalism for the analysis. We use model transformations to

specify the link between the DSM, and the formal semantic domain. The translation

abstracts out the necessary details from the DSM; the formal models usually capture

key properties of the system at higher-level abstractions than the DSM itself. As with

simulations, the abstraction influences the complexity of the analysis as well as its

precision. If the analysis model is too abstract, results may become inaccurate, if it is

too complex the analysis will likely hit the state space explosion problem. Finding the

right abstraction is the key for the successful model-based analysis of DRE designs.

When designing applications that require support for multiple QoS properties, the

analysis often requires multiple tools for the analysis. For example, one tool can

be used to verify real-time properties, while simulations can be used to predict the

overall power consumption of the system. The DRE Semantic Domain provides a

common semantic domain that can capture multiple QoS properties of a generic class

of DRE systems. The DRE Semantic Domain provides the basis for the analysis

of the DSM.

Simulators are often integrated into the analysis tools. When the model checking

tool finds an unsatisfied property the simulator can be used to simulate the execution

trace that yields this undesired behavior. For example, a model checker may find

system deadlocks by checking the formal model of computation generated from the

12

domain-specific application model.

We use the profiling information from simulations to annotate the models used

by formal methods. Common parameters obtained by simulations include execu-

tion times captured as intervals, priorities, scheduling, the size of messages sent

between components etc. Since a single simulation usually consists of several hun-

dreds/thousands transactions, parameters for components can be usually estimated

with good accuracy, even when a small number of test cases are used. The major

source of uncertainty arises from the concurrent processing and non-deterministic

execution times, that the formal models inherently capture.

By utilizing an abstract formal representation of the system for simulations, sig-

nificant simulation speedups can be achieved for dynamic analysis. As execution

parameters are obtained by simulations, the accuracy of the formal analysis is com-

parable to simulation results, while providing better coverage. The formal executable

model can be mapped to heterogeneous Models of Computation (MoCs) for formal

analysis. We utilize the model checking [31] approach for the analysis of the for-

mal semantic domain to address three key problems; (1) functional verification, (2)

performance estimation, and (3) real-time verification.

This approach allows to find the formalism that provides the best scalability with

the required precision. Moreover, unlike pure model checking methods, the proposed

approach can provide partial simulation results in cases where exhaustive analysis is

infeasible. Therefore, the combination of simulations and model checking improves

the existing practice of random simulations and can provide partial results when

model checking methods fail due to the state space explosion problem.

The three challenges addressed by our proposed analysis framework – functional

verification, performance estimation, real-time verification – require different ap-

proaches, MoCs, abstractions, and tools for formal analysis. We pick the MoC and

abstraction level for each analysis method that provides the most efficient analysis.

13

The proposed cross-abstraction real-time analysis framework provides a way to utilize

the right level of abstraction for each analysis method.

1.3 Key Contributions of this Dissertation

This dissertation proposes a model-based design methodology to address three ma-

jor challenges in the formal analysis of DRE systems: (1) functional verification – to

ensure that the system will not be trapped in a deadlock or livelock state, (2) perfor-

mance estimation – in order to obtain tight bounds on the worst case performance of

the DRE design, and (3) verification of real-time properties – to prove whether indi-

vidual deadlines for tasks and performance estimates hold for the DRE design. The

novelty of our approach lies in (1) combining formal methods and symbolic simula-

tions for the system-level evaluation of DRE designs early in the design flow, and (2)

utilizing multiple abstractions to trade off analysis accuracy and scalability. The key

technical contributions of this dissertation shown in Figure 1.2 are as follows:

• Definition of a formal semantic domain for AEDRE systems: we describe

the DRE Semantic Domain – a formal executable domain for the analysis of

DRE systems. We review common methods to specify semantics in Chapter 3,

then describe our approach for the modeling of DRE systems by meta-modeling,

and introduce the Analysis Language for Distributed, Embedded, and Real-time

Systems (Alderis) DSML. This work is described in Chapter 4.

• A model checking method for the real-time verification of non-pre-

emptive AEDRE systems by Timed Automata (TA): we specify TA models

for the compositional analysis of DRE systems. We describe the refinement-

based transformation process that allows the analysis of Alderis models by

TA model checking methods in Chapter 5.

14

Figure 1.2: Key Technical Contributions of this Dissertation

• A performance estimation method for AEDRE systems by Discrete

Event Simulations (DES): we describe a novel DES-based performance es-

timation method for DRE systems. The DES-based method is applicable to

large-scale DRE systems as it is based on repetitive simulations of the model,

and therefore does not suffer from memory consumption limits. Moreover, it can

provide partial results in case the models are too large for exhaustive analysis.

This work is described in Chapter 6.

• A conservative approximation method for the verification of preemp-

tive AEDRE systems by TA: In this dissertation, we refer to preemptive

AEDRE systems as Preemptive Event-driven Asynchronous Real-time Systems

15

with Execution Intervals (PEARSE). Preemptable tasks can be expressed using

Stopwatch Automata (SA) [77]. The reachability problem on the composition of

SA as a task graph is undecidable in general, since it can be mapped to the halt-

ing problem [55]. The schedulability of preemptive multi-processor systems is

undecidable using TA in the generic case [59], as Timed Automata (TA) cannot

directly model stopwatches. Therefore, model checking PEARSE is a challenging

problem that is undecidable in the generic case. Chapter 7 presents a novel con-

servative approximation method for the practical model checking of PEARSE.

To the best of our knowledge, the proposed method is the first decidable – and

therefore practically applicable – method for the real-time verification of AEDRE

systems designed as Preemptive Event-driven Asynchronous Real-time Systems

with Execution Intervals (PEARSE).

Utilizing the key technical contributions of this dissertation, we apply the analysis

methods to the following problem domains:

• Cross-abstraction verification and performance estimation of MPSoCs:

While MPSoC designs themselves can be viewed as DRE systems, the com-

munication subsystem in MPSoC designs has a major impact on both design

and analysis. Unlike software-intensive AEDRE systems that communicate over

packet-switched networks, MPSoC designs often utilize complex bus matrix ar-

chitectures, where access to the bus is managed by an arbiter (or several ar-

biters). Bus protocols and arbitration policies have a major impact on key

design parameters such as throughput and delays, and present new challenges

for functional verification. In particular, deadlock-freedom and livelock-freedom

is not guaranteed by bus protocols, but is a key requirement for designers.

This dissertation introduces an approach for the combination of transaction-

level simulations and model checking for formal MPSoC performance estimation

16

and real-time analysis in Chapter 8. We then extend the real-time analysis to

bus matrix MPSoC designs. Chapter 9 describes how methods for the analysis

of AEDRE systems can be adapted to MPSoC designs utilizing fully connected

bus matrix interconnects, and how point arbitration policies can be expressed

by the non-preemptive scheduling of task graphs.

• The open-source Distributed Real-time Embedded Analysis Method (Dream)

framework for the simulation-guided verification and performance es-

timation of AEDRE systems: Dream is an open-source tool and method for

the model-based real-time verification and performance estimation of DRE sys-

tems, that implements the high-level design flow shown in Figure 1.1. It imple-

ments the key technical contributions of this dissertation; (1) Timed Automata

(TA)-based real-time verification of non-preemptive AEDRE systems using the

Uppaal [26] and Verimag IF [15] model checkers, (2) DES-based method for

performance estimation, (3) conservative approximation method for the verifi-

cation of PEARSE. Dream models may be specified using Alderis, a modeling

language based on the DRE Semantic Domain. The Dream project focuses

on the practical application of formal analysis methods to automate the verifi-

cation, development, configuration, and integration of AEDRE systems. Chap-

ter 10 describes the implementation of the open-source Dream tool. Dream

is available for download at http://dre.sourceforge.net.

17

http://dre.sourceforge.net

Chapter 2

Related Work

A key contribution of this dissertation is the integration of various analysis methods,

tools, and abstractions for the model-based verification and performance estimation of

Distributed Real-time Embedded (DRE) systems. In this chapter we describe how the

proposed model-based analysis framework improves on related work. As key technical

contributions of this dissertation consider multiple aspects of DRE system design, we

partition existing work into sections of relevant work.

2.1 Model-based Design and Analysis of Distributed Real-time

Embedded Systems

This section compares the proposed model-based analysis framework for DRE systems

with existing modeling approaches.

The Society of Automotive Engineers: Architecture Analysis & Design Language

(SAE AADL) [34] is an international standard Architecture Description Language

(ADL) originally developed for complex avionics applications. SAE AADL is a suc-

cessor of the Honeywell MetaH toolset [99], a commercially available domain-specific

ADL for developing reliable, real-time multi-processor avionics system architectures.

More recently, the Open Source AADL Tool Environment (OSATE) tool was intro-

duced, that is an open-source design framework implemented as a set of Eclipse plu-

gins. Eclipse is a widely used Integrated Development Environment (IDE) by IBM.

In the design framework presented in this dissertation, SAE AADL could be viewed

as the domain-specific model shown in Figure 1.1. The Analysis Language for Dis-

tributed, Embedded, and Real-time Systems (Alderis) Domain-specific Modeling

18

Language (DSML) presented in Chapter 4 is less detailed than SAE AADL, but has

formal semantics, allowing the real-time verification of the models.

Simulink and Real-time Workshop from The Mathworks provides a complex IDE

for the design of real-time embedded systems. The tool can generate ISO C/C++

code from models for multiple platforms. Single- and multi-rate, as well as asyn-

chronous real-time systems are supported. Simulink is a de facto standard for the

simulation-based evaluation of DRE systems. This dissertation considers the problem

of combining simulations and formal methods for real-time analysis.

Ptolemy II [63] is a complex design framework that composes heterogeneous

Models of Computation (MoCs) for the evaluation of embedded systems, including

continuous-time, discrete event, synchronous data flow, among others. Ptolemy

II focuses on the modeling, simulation, and design of concurrent, real-time, em-

bedded systems, and can perform simulations of the composed models for eval-

uation. Ptolemy II focuses on deterministic systems, and aims to provide an

alternative to abstractions built on non-deterministic threads [62]. Recently, the

Programming Temporally Integrated Distributed Embedded Systems (PTIDES) pro-

gramming model [105] was introduced in Ptolemy II for the analysis of DRE systems

based on a Discrete Event (DE) model. PTIDES provides a programming model that

inherently captures time as a key design constraint, and enforces the deterministic

execution of concurrent real-time systems. Implementing deterministic distributed

systems, however, is a challenging task that requires fundamental changes in hard-

ware and software design. In contrast, this dissertation focuses on improving analysis

methods in practical DRE systems, that are often non-deterministic. Communication

delays, race conditions, resource congestions, caching, and even varying input data

all contribute to non-deterministic execution times and delays.

Giotto [44] utilizes the notion of Logical Execution Time (LET) to enforce de-

terministic execution times in real-time embedded systems. Giotto is a time-

19

triggered language, and advocates the use of Time-triggered Distributed Real-time

Embedded (TTDRE) systems. LET specifies a task’s execution time as a constant

c ∈ R≥0. The activation time of the task ta ∈ R≥0 is tied to a specific valuation of

the global clock, and the output of the task is available at ta + c time. By enforcing

the constraint that none of the task’s dependents may start their execution before

ta + c, we ensure that all the task’s dependents have access to the correct output.

Asynchronous activation is not allowed; should the task finish earlier than ta + c,

its dependents still have to wait until they are activated by the global clock at time

tx ∈ R≥0, ta + c ≤ tx. While this approach has the undesired effect that it may

result in tasks idling simply because they have not been activated yet, it also has the

advantage that it turns a task’s execution time to constant. Constant c acts as the

logical execution time; regardless of whether the task finished its execution faster or

slower, designers are able to treat its execution as constant, resulting in determinis-

tic time behavior, better predictability and greatly improved analysis performance.

In contrast, this dissertation focuses on the analysis of Asynchronous Event-driven

Distributed Real-time Embedded (AEDRE) systems using multiple abstractions and

analysis methods.

Model-integrated Computing (MIC) [94] is an approach that proposes the use of

DSMLs for the specification, verification and integration of embedded systems using

the concept of meta-modeling, and the Generic Modeling Environment (GME). MIC

advocates a model-driven development paradigm for the design of complex software

systems [11]. The model-based design framework proposed in this dissertation is

based on the concept of MIC, and the Alderis DSML.

The Component Synthesis using Model Integrated Computing (CoSMIC) [38] toolkit

is an integrated collection of DSMLs that support the development, configuration, de-

ployment, and evaluation of DRE systems, using the GME tool. The CoSMIC tools

can be used to specify requirements, compose DRE systems and their supporting in-

20

frastructure from the appropriate set of middleware components. In contrast, this

dissertation focuses on the analysis of AEDRE systems using multiple abstractions

and analysis methods.

The Virginia Embedded Systems Toolkit (VEST) [92] is a framework designed for

the reliable and configurable composition and analysis of component-based embedded

systems from Commercial off-the-shelf (COTS) libraries. The modeling environment

uses the GME tool. VEST applies key checks and analysis but does not support formal

proof of correctness. In contrast, the model-based design framework described in this

dissertation supports several formal analysis methods.

CALM and Cadena [24] provide an integrated environment for building and ana-

lyzing software-intensive DRE systems built on the CORBA Component Model (CCM),

or Enterprise JavaBeans (EJB). Main functionality of CALM and Cadena include

software modeling, dependency analysis, component integration, code generation, and

real-time analysis. The emphasis of verification in Cadena is on software logical

properties. In contrast, this dissertation focuses on the analysis of AEDRE systems

using multiple abstractions and analysis methods.

SysWeaver [27] (previously referred to as Time Weaver and Geodesic) is

a component-based framework that supports the reusability of components across

systems with different para-functional requirements. It supports code generation, as

well as automated analysis. SysWeaver also builds a response chain model [57] of

the system to verify timing properties. This model is used by real-time analysis tools,

such as TimeWiz, to build a task set that can be analyzed using Rate Monotonic

Analysis (RMA). In contrast, this dissertation focuses on the analysis of AEDRE

systems using multiple abstractions and analysis methods.

The Automatic Integration of Reusable Embedded Software (AIRES) [102, 39] tool

extracts system-level dependency information from the application models, includ-

ing event- and invocation-dependencies, and constructs port- and component-level

21

dependency graphs. Various polynomial-time analysis tasks are supported such as

checking for dependency cycles as well as forward/backward slicing to isolate relevant

components. It performs real-time analysis using RMA techniques. In contrast, this

dissertation focuses on the analysis of AEDRE systems using multiple abstractions and

analysis methods.

Graph transformations [89] were proposed for the implementation of model trans-

formations in model-based analysis frameworks. In earlier work we considered the

applicability of Graph Rewriting and Transformation (GReAT) [3] for model-based

verification [67]. As the graph transformation rules get more complex, proving the

property-preserving nature of graph transformations becomes a challenging academic

exercise. This dissertation does not focus on graph transformations, as we define the

semantic mapping manually by simple refinement rules in Chapter 4.

The VIsual Automated model TRAnsformations (VIATRA) model-based design

framework was described in [97]. The authors utilize graph transformation to trans-

form Unified Modeling Language (UML) models to a formal representation driving the

verification of functional properties by model checking. In contrast, this dissertation

targets the analysis of real-time properties in DRE systems specified as DSMLs.

2.2 Real-time Analysis of Distributed Real-time Embedded

Systems

Real-time properties have been widely studied in the context of DRE systems. This

section compares related work with the real-time analysis methods developed as part

of this dissertation.

22

2.2.1 Classic Scheduling Theory

Time-triggered approaches [58] are becoming common in mission-critical systems.

Classic schedulability analysis methods such as RMA and Earliest Deadline First (EDF)

provide sufficient conditions for schedulability [64, 57, 20] in predictable periodic real-

time systems such as TTDRE systems, but they do not address the dynamics of events,

race conditions, and the non-deterministic execution order of tasks. These methods

are typically overly conservative or unapplicable for the analysis of AEDRE systems.

A holistic method is proposed for distributed preemptive scheduling [96] that pro-

vides sufficient conditions for schedulability using a Time Division Multiple Access

(TDMA) communication bus. The model is general enough to represent a handful of

real-time systems but is not suitable for AEDRE systems with asynchronous event-

driven communication.

Mathematical approaches that consider task dependencies to check real-time con-

straints are usually extensions of the job shop scheduling problem, which is NP-

complete [14]. The Resource Constrained Project Scheduling Problem (RCPSP) is a

prominent extension for which the fastest solutions use genetic algorithms and meta-

heuristics [42]. The RCPSP, however, does not focus on providing guarantees on

real-time properties.

2.2.2 Model Checking Non-preemptive Scheduling

Model checking provides alternative methods for the dynamic analysis of DRE systems.

Timed Automata (TA) [6] was proposed as a semantic domain for real-time verification

in dense (continuous) time. TA inherently captures the asynchronous event-based

triggering of AEDRE systems.

A generic non-preemptive task scheduling model based on TA was proposed in [32].

The scheduling model is based on a ready queue, and schedulability is verified using

the Uppaal [26] tool. The analysis method described in Chapter 5 extends this

23

idea to AEDRE systems, capturing key components, including event channels, and

distributed platforms. The open-source Distributed Real-time Embedded Analysis

Method (Dream) tool utilizes the Uppaal model checker for real-time analysis,

among others.

A promising way to address TA composition using priorities is presented in the

Verimag IF toolset [15]. IF defines priorities between transitions in TA models to

improve the composability of TA models. The number of priorities, however, is fixed,

and therefore requires extra effort in modeling scheduling policies. The open-source

Dream tool utilizes the Verimag IF model checker for real-time analysis, among

others.

A TA-based approach for the thread-level analysis of DRE systems is presented

in [98]. The authors present a reusable library of formal models to capture timing

and semantics in The ACE ORB (TAO) [90]. In contrast, this dissertation targets the

modeling and analysis of DRE systems at the task-level.

We have presented a formal method for deciding the schedulability of non-pre-

emptive real-time Common Object Request Broker Architecture (CORBA) applica-

tions using TA model checking methods in [66]. We extended this early work with

event channels, and presented a comprehensive non-preemptive scheduling model for

fixed-priority DRE systems in [67]. Chapter 5 is based on this research, with some

minor improvements designed to increase scalability.

2.2.3 Model Checking Preemptive Scheduling

Stopwatch Automata (SA) [77] were proposed as a model of computation that can

express preemptable tasks in asynchronous event-driven systems. The reachability

problem on the composition of SA as a task graph is undecidable in general, since it

can be mapped to the halting problem [55]. The schedulability of preemptive AEDRE

systems is undecidable using TA in the generic case [59], as TA cannot directly model

24

SA. More specifically, the verification of preemptive scheduling using TA is unde-

cidable if the following conditions are met: (1) tasks use event-based asynchronous

triggering (i.e. a target task starts whenever its source finishes) on a distributed plat-

form, (2) execution times are specified as continuous-time intervals, (3) preemptions

may occur anytime within the continuous-time execution interval. In this dissertation,

we refer to systems that satisfy these three conditions as Preemptive Event-driven

Asynchronous Real-time Systems with Execution Intervals (PEARSE).

Therefore, DRE system designers typically restrict the simultaneous occurrence of

the three conditions used to define PEARSE systems to allow real-time analysis.

(1) Restricting asynchronous triggering: commonly used approach, resulting

in TTDRE systems. Classic schedulability analysis methods described in Section 2.2.1

provide sufficient conditions for schedulability in predictable periodic real-time sys-

tems, but they do not address the dynamics of events, race conditions, and the non-

deterministic execution order of tasks. These methods are typically overly conserva-

tive or unapplicable for PEARSE.

A method that combines scheduling theory with TA model checking for fixed-

priority scheduling was proposed in [16]. Even though TA can express asynchronous

event-driven communication, the authors focus on the analysis of TTDRE systems, as

the approach is based on the periodic task model. The scheduling algorithm is not

modeled, rather the authors assume that RMA analysis is sufficient, which is only true

in TTDRE systems, as shown in Chapter 7.

A generic periodic task and scheduling model for preemptive systems based on

TA was introduced in [35]. This work uses the idea of discretizing TA clocks for

the modeling of preemptive systems, but restricts asynchronous triggering, and is

therefore only applicable to periodic task models.

(2) Restricting continuous-time execution intervals: synchronous languages

[13] propose a common mathematical model for synchronous systems with determinis-

25

tic concurrency, but do not address non-deterministic execution times, arrival times,

and asynchronous event-triggering typical in PEARSE systems. In Giotto [44], de-

terministic execution times are enforced to facilitate formal analysis, based on the

concept of logical time.

A method based on stopwatch automata [77] was proposed for the job-shop schedul-

ing of preemptive systems [2]. This method is applicable for the real-time verification

of PEARSE models, where execution times are given as constants. This restriction

turns the reachability analysis decidable, as a single simulation trace can verify this

model. However, this approach is too coarse for practical analysis, as execution times

are often non-deterministic in AEDRE systems.

(3) Restricting preemptions: we discussed methods for the analysis of non-

preemptive DRE systems in Section 2.2.2. Our earlier approach for modeling preemp-

tive systems using timed automata [65] restricts preemptions to occur at discrete time

steps.

The 3 restrictions described above involve cost, performance, and energy consump-

tion overheads, as deterministic behavior has to be enforced on a distributed platform.

These costs can often be justified only in the context of mission-critical systems. In

most DRE systems, including consumer electronics, PEARSE models are commonly

used. The industry practice for the analysis of PEARSE consists mostly of directed

testing and random simulations. Although this approach may be helpful, it can only

show the presence of timing violations, not their absence.

In Section 7 we propose a conservative approximation method that allows the

simultaneous use of (1) asynchronous event-based triggering, (2) continuous-time

execution intervals, and (3) preemptions that may happen anytime within a task’s

execution interval. To the best of our knowledge, the only alternative for the real-time

analysis of systems that use the above three conditions (PEARSE systems) is stopwatch

(hybrid) automata model checking. Reachability analysis is undecidable in general

26

on SA, therefore none of the methods described below are guaranteed to terminate

on practical problems. Moreover, scalability issues constrain the applicability of the

method to small-scale problems.

The problem of verifying real-time properties in PEARSE have not been studied

in detail, and very few works target this problem directly. An approach for the

response time analysis of DRE systems was presented in [17]. the authors present

a language for the specification of distributed real-time systems, and describe an

approach to transform the model to hybrid automata for reachability analysis using

the HyTech [43] Hybrid Automata (HA) [45] model checker. Since reachability

analysis on HA is undecidable in the generic case, this method is not guaranteed to

terminate, and is not practical for the analysis of PEARSE.

Preliminary experiments for approximating stopwatch reachability analysis using

timed automata were described in [22], but the method is not guaranteed to terminate,

since reachability analysis is undecidable on stopwatch automata in the general case.

An approach for the verification of PEARSE using linear HA was presented in [100].

The author proposes a generic task model for preemptable tasks as utilized in the

Honeywell MetaH toolset. The underlying analysis, however, is based on HA reacha-

bility analysis that is not guaranteed to terminate. Our work presented in [71], and

described in Chapter 7 considers the same issues, but provides a conservative approx-

imation method for deciding schedulability. This method is guaranteed to terminate,

and has better scalability than existing methods, as shown in Chapter 7.

2.3 Performance Analysis

2.3.1 Static Performance Analysis Methods

An approach for the performance estimation of DRE systems was presented in [104].

The authors model DRE systems by periodic multi-rate tasks mapped to distributed

27

processing elements, and target the performance estimation problem by providing

bounds on delays. The periodic task model, however, restricts the approach to TTDRE

systems.

A generic, component-based formal framework for the scheduling analysis and

formal performance evaluation of platform-based embedded systems was proposed

in [86]. The authors utilize event streams to model communication characteristics of

tasks.

SymTA/S [85] is a formal analysis tool that applies methods from scheduling the-

ory and symbolic simulations for the performance analysis of complex heterogeneous

Multi-processor System-on-Chip (MPSoC). This approach can provide bounds on end-

to-end latencies, bus and processor utilization, and worst-case scheduling scenarios.

Modular Performance Analysis [33] is an approach to characterize DRE systems

merely by describing incoming and outgoing event rates, message sizes, and execution

times. Resources and the distributed execution platform is defined in similar terms,

and Real-Time Calculus is then used to compute upper and lower bounds of the

system performance.

Although all static analysis methods provide scalable solutions for performance

evaluation they cannot model dynamic effects, such as varying delays and race con-

ditions, as they do not capture the flow of data, and are less accurate than dynamic

estimation methods. Communication in embedded systems is often non-deterministic,

data-dependent, and hard to model as well-formed event streams.

In contrast, the analysis methods in this dissertation explicitly capture depen-

dencies, and the asynchronous event-based communication of AEDRE systems. This

approach captures dynamic effects, such as varying delays and race conditions in dis-

tributed systems, and results in more accurate performance analysis at the price of

being computationally more intensive.

28

2.3.2 Dynamic Performance Analysis Methods

Simulations are the preferred and widely accepted way to evaluate the performance

of DRE system designs in the industry today. A simulation-based design space ex-

ploration method, however, has several disadvantages. Developing the models for a

design alternative may take weeks or months therefore only a handful of alternatives

may be practically analyzed given the short product development cycles. Moreover,

designers typically notice performance issues late in the design cycle – after the simu-

lation model is complete – therefore addressing changes can be rather time-consuming

and costly.

Register-Transfer Level (RTL) languages such as VHDL [49] and Verilog [50] are

classic hardware description languages that target hardware specification at low-level

abstractions providing a high precision, synthesizable platform for hardware develop-

ment. The low-level abstraction, however, results in slow simulation speeds unsuitable

for the analysis of complex MPSoCs.

Due to the increase in MPSoC design complexity as well as the decrease in the

time to market window, today’s designers are turning to transaction-level model-

ing languages such as SystemC [80] and SystemVerilog [51] to perform early de-

sign exploration and hardware-software co-design in order to shorten the design cy-

cle. Transaction-level modeling focuses on the interactions between systems compo-

nents, such as bus transfers, interrupts or signals, rather than on gates or registers.

Transaction-level languages employ higher-level abstractions than RTL languages and

are often not synthesizable.

A semi-formal simulation-based performance evaluation method for MPSoCs was

proposed in [60]. The authors represent execution traces as symbolic graphs for per-

formance analysis, annotated with execution times obtained by simulating individual

components of the system. Although the approaches described in [60] improves sim-

ulation speed by utilizing symbolic representations of execution traces, the quality of

29

results depends on the ad-hoc selection of test vectors.

This dissertation considers the problem of combining simulations and formal meth-

ods for real-time analysis. Simulations in our approach are used to obtain execution

intervals, that we use to annotate the formal models for design space exploration.

Our symbolic model captures all possible execution traces of the system, not just one

execution trace. This is a more accurate model for AEDRE systems, where execution

times are rarely constant. Moreover, we formalize our method for obtaining test vec-

tors based on the DE model, that provide better coverage than random simulations.

2.3.3 Model checking methods

Although model checking methods described in Section 2.2.2 and Section 2.2.3 pro-

vide the means for the formal real-time verification of DRE systems, their practical

applicability to the performance evaluation of large-scale DRE systems is limited. The

exhaustive verification of large-scale DRE systems is often infeasible in practice, and

is often unnecessary, as the performance can usually be estimated accurately with less

than perfect coverage. Moreover, most model checkers are based on logics [75, 25, 18]

tailored towards yes/no questions which makes formal performance evaluation a te-

dious process.

Chapter 6 proposes a method based on Discrete Event Simulations (DES) for the

performance evaluation of large-scale DRE systems. Although the proposed method

provides a way for the formal verification of real-time properties, fast symbolic simu-

lations are its main advantage, and is directly applicable to large-scale systems, that

cannot be analyzed using an exhaustive state space search. The DES-based analysis

increases the coverage by gradually simulating the symbolic models, and can answer

complex questions on the symbolic executable models. We show that this approach

provides a way for fast design space exploration, and can achieve better coverage in

some cases than alternative methods.

30

2.4 Functional Verification of MPSoCs

A generic method for protocol verification using synchronous protocol automata is

presented in [30]. Synchronous protocol automata can be mapped to the Finite State

Machine (FSM) MoC, and a main contribution of the paper is to show how protocols

can be translated to a formal language for functional verification.

A method for the functional verification of the Peripheral Component Interconnect

(PCI) protocol is described in [23]. The authors model the PCI protocol by the FSM

MoC, and use the Cadence SMV [56] tool for functional verification. A similar ap-

proach is used to verify the IBM CoreConnect arbiter in [37].

An early work on applying model checking methods to the ARM Advanced Mi-

crocontroller Bus Architecture Advanced High-speed Bus (AMBA AHB) protocol was

presented in [88], where the authors used FSM models and the SMV tool to uncover

an unspecified condition in the AMBA AHB specification. The described case study is

due to flawed implementation rather than the protocol itself.

A verification platform for AMBA-ARM7 is presented in [93]. The authors use the

SMV tool to prove the functional correctness of the AMBA AHB protocol by checking

various properties. The authors do not describe any ambiguities, rather they focus

on properties that have turned out to be valid.

A verification platform for AMBA AHB using a combination of model checking and

theorem proving is described in [7]. The author extends earlier approaches by con-

sidering both control and data properties, and describes properties that have proven

to be true.

We have presented a method for the functional verification and formal perfor-

mance evaluation of AMBA AHB-based MPSoC designs in [74, 73], and showed how

model checking may improve the test coverage of transaction-level simulations for

performance evaluation. We also presented an ambiguous case in the AMBA AHB

specification that might lead to flawed implementations.

31

Our results do not imply that the AMBA AHB protocol is incorrect, and neither

does it imply that the works described in [93] [7] are invalid. Rather, it shows that

ambiguities in protocol specifications are often manually resolved on a case-by-case

basis when implementations or formal models are created and only the correctness

of such models can be shown rather the correctness of the specification itself. The

main reason for this is the ambiguity of natural languages that should be resolved by

future designers by providing a formal specification for their protocol.

We presented an approach for the cross-abstraction analysis of MPSoC designs

based on AMBA AHB bus matrix (crossbar switch) interconnects in [72]. This work

applies the DES-based performance estimation method to complex MPSoC designs,

and is described in detail in Chapter 8.

32

Chapter 3

Specifying Semantics

This chapter reviews some of the key concepts utilized in this dissertation. Section 3.1

reviews the specification of Domain-specific Modeling Languages (DSMLs), Section 3.2

gives an overview of semantics, and how it is used to assign meaning to DSMLs.

Section 3.3 describes how meta-modeling can be used to specify DSMLs.

3.1 Domain-specific Modeling Language

DSMLs are modeling languages tailored towards a specific problem domain. DSMLs

play an essential role in the design and analysis process, and can also be used to

synthesize executable code, simulations, or documentation. This approach is rather

different from mainstream modeling efforts that focus on specifying a large and generic

modeling language to be used in a wide range of applications, such as Unified Modeling

Language (UML) [54]. DSMLs in our approach are defined using meta-modeling [94]

therefore the designer has the option of defining languages that have well defined

semantics and are a good fit for a problem domain. Large-scale systems that involve

several application domains are modeled as a composition of DSMLs. We believe

that defining semantics to smaller modeling languages and their composition is more

likely to succeed than to define it for a large generic modeling language. Figure 3.1

illustrates how a DSML is defined:

• Concrete syntax (C): the concrete syntax is concerned with representation;

it specifies how the DSML is represented in terms if actual characters, letters, or

other visual constructs. More specifically, the concrete syntax assigns a concrete

representation to elements of a DSML. In the case of a natural language, the

33

concrete syntax specifies not the alphabet itself, but rather how all the charac-

ters in the alphabet are represented. In the case of a programming language,

the concrete syntax specifies the representation of the source code.

• Abstract syntax (A): the abstract syntax is concerned with structure, and

defines what the elements in the concrete syntax represent. The concrete syntax

is mapped to the abstract syntax by the (MC) concrete syntax mapping. The

syntax is abstract in the sense that it does not capture every detail that the

concrete syntax captures.

In the case of a natural language, the abstract syntax specifies the alphabet, and

how words can be formed by streams of letters. The concrete syntax mapping

specifies which letter corresponds to a specific representation. For example, the

‘A’, ‘A’, ‘A’, ‘A’, characters all represent the letter ‘A’ in the alphabet, and

we subconsciously perform the concrete syntax mapping as we read the text.

The abstract syntax also specifies that ‘fimews’, ‘cat’, ‘yawon’ are character

streams that represent words, but is not concerned about the meaning of the

words themselves. In the case of a programming language, the abstract syntax

represents the abstract syntactic representation of source code. An abstract

syntax tree is commonly used, where nodes represent various constructs in the

source code.

• Semantics (S): the semantics of a language refers to “meaning”, and is con-

cerned about the meaning of words/sentences/models constructed using the

abstract syntax. The semantic domain refers to elements with meaning, and

the semantics of a DSML is specified by the semantic mapping (MS) from the

abstract syntax to the semantic domain. Semantics plays an important role

in model-based design and analysis, and we give a brief overview on it in Sec-

tion 3.2.

34

Figure 3.1: Domain-specific Modeling Language

3.2 The Semantics of “Semantics”

Semantics is a broad concept, that is hard to grasp at first. A good overview of what

semantics is, and what it is not is presented in [40]. In this Section we give a short

overview, and describe major approaches for defining formal semantics.

Semantics can be formal or informal. Most natural languages have informal se-

mantics, that may lead to ambiguities. For example, a fast car on the street may not

be a fast car on the race track. Asking for a big glass of beer in the US will likely be

less than half liter, while in Europe it may be as big as 1 liter.

To enable rigorous analysis, ambiguities need to be avoided, which leads us to

formal semantics. Formal semantics of a language aim to specify the mathematical

meaning of syntactically well-formed sentences in the given language. Defining the

formal semantics of a language is a prerequisite to any formal analysis. However, the

majority of languages does not have well-defined formal semantics. Commonly used

programming languages such as C++ and Java also lack formal semantics, but that

does not prevent them from being used to implement programs.

35

3.2.1 Semantic Domain

The semantic domain refers to rigorous mathematical concepts with unambiguous

meaning. The semantics or “meaning” of a language is specified by the semantic

mapping; a mapping from its abstract syntax to the semantic domain. By assign-

ing a formal mathematical representation to elements in the abstract syntax of the

language, we define what the syntax represents.

There is only one key requirement for the semantic domain: it has to define unam-

biguous meaning to the abstract syntax. Therefore, the choice of the semantic domain

focuses on finding a mathematical representation that provides a good “fit” to repre-

sent the abstract syntax. Some widely used choices for a semantic domain include set

theory, graph theory, linear algebra, probability theory, Finite State Machines (FSMs),

Petri-nets, Timed Automata (TA), various classes of Hybrid Automata (HA). By spec-

ifying the mapping from the abstract syntax to a formal semantic domain, we assign

formal semantics to a language (such as a DSML). Note that it is not a requirement

for the semantic domain to “look mathematical”. Petri-nets, for example, are a visual

modeling language, but have rigorous semantics.

3.2.2 Model of Computation

A Model of Computation (MoC) specifies a set of allowable operations on a specific

domain. The basic components of MoCs are as follows:

• an abstract machine,

• the state of the abstract machine,

• a transition function that maps one state to another, expressing how the state

of the machine evolves,

• an initial, and a final (accepting) state.

36

To define the semantics of a MoC, one has to define how its abstract syntax maps to

a formal semantic domain. There are several MoCs with formally defined semantics.

Some example include FSM, Discrete Event (DE), TA, HA, Petri-nets etc.

If a MoC has formal semantics, then it can be used as a semantic domain itself.

By mapping a language to a MoC with formal semantics, the semantic mapping is

specified, and thus we define semantics for the language.

3.2.3 Structural Semantics

Structural semantics specifies the structure of the language, the structure between

elements in the semantic domain. While abstract syntax also represents structure in

the syntax, structural semantics goes one step farther, and specifies well-formedness

rules and various constraints on valid phrases of the language. Structural semantics is

incomplete in the sense that it does not specify the full semantics of a language, rather

just the subset of semantics relevant to the structure and interrelation of elements in

the semantic domain.

3.2.4 Operational Semantics

Operational semantics for a language specifies how program written using the lan-

guage is interpreted through a sequence of operators. This approach generally utilizes

a MoC, and defines the operation of the abstract machine through state transitions.

However, operational semantics is not the MoC itself, as it needs to specify the seman-

tic mapping from the abstract syntax to the semantic domain – which in this case is

a MoC.

A common method to define operational semantics is to specify trace semantics;

formalize meaningful sentences that can be constructed using the language, and spec-

ify the operation of the abstract machine on the set of all sentences (traces). The

final state of the abstract machine provides the output, and defines the set of traces

37

that the abstract machine accepts.

3.2.5 Denotational Semantics

Denotational semantics is an approach to define the semantics of a language by associ-

ating phrases in the language with abstract mathematical objects, such as numbers,

tuples, functions etc. The mathematical object is called the “denotation” of the

phrase. The collection of the mathematical objects is the semantic domain, and se-

mantics is defined by specifying the mapping from the abstract syntax to the semantic

domain.

A key difference between the operational definition of semantics and denotational

semantics is that denotational semantics is not concerned about representing the

operation of an abstract machine. Due to this fact, it has traditionally been hard to

use denotational semantics to define the execution of programs written in imperative

programming languages (such as C, C++, Java etc.).

3.2.6 Axiomatic Semantics

Axiomatic semantics defines the semantics of a phrase by specifying logical assertions

on values and variables, omitting details on how the computation is carried out.

Computations are specified by assertions; the initial assertion must evaluate to true

before the computation begins, and the final assertion must evaluate to true when

the computation finishes. This approach may provide a good match to define the

semantics of declarative languages.

Axiomatic semantics – like denotational semantics – do not capture how compu-

tations correspond to the sentences in a language, and are therefore hard to apply

directly for the analysis of imperative programming languages.

38

3.3 Specifying Domain-specific Modeling Languages by

Meta-modeling

This section describes how the concepts of Model-integrated Computing (MIC) [94] can

be utilized to define DSMLs. MIC promotes an approach based on meta-modeling for

powerful domain-specific abstractions that capture key concepts and concerns of DRE

systems, such as their structure, behavior, and environment, as well as the Quality of

Service (QoS) properties they must satisfy. Experience in developing mission-critical

Distributed Real-time Embedded (DRE) systems [36] to date has shown that models

are essential throughout the DRE system life cycle, including the design, configu-

ration, integration, and analysis phases. MIC adopts the four-layered metamodeling

architecture of the Model-driven Architecture (MDA) that has been standardized by

the Object Management Group (OMG). MIC can be viewed as an enhancement of MDA

that is tailored towards system design via DSMLs. This approach provides a practical

visual language that can be used by DRE domain experts that are not necessarily

familiar with formal methods.

The Generic Modeling Environment (GME) [61] is an MIC tool suite that pro-

vides a visual interface to simplify the development of DSMLs. GME implements

a meta-modeling environment that supports the definition of paradigms, which are

type systems that describe the roles and relationships in particular domains. GME has

a flexible object-oriented type system that supports inheritance and instantiation of

elements of DSMLs. GME allows to specify a modeling language using meta-modeling.

Figure 3.2 illustrates the specification of the Analysis Language for Distributed,

Embedded, and Real-time Systems (Alderis) language described in Chapter 4 using

the GME meta-model, which is a variation of UML class diagrams. The figure shows

a part of the Alderis meta-model with its corresponding visual representation in

GME. The curvy arrows show how individual modeling elements and their relations

39

Figure 3.2: Specifying the Alderis DSML using Meta-modeling

are defined by different parts of the meta-model. The Alderis modeling language is

automatically synthesized from the meta-model by the GME tool.

GME provides an integrated constraint definition and enforcement module based

on OMG’s Object Constraint Language (OCL). OCL enables the definition of rules

that must be adhered to by elements of models built using a particular DSML. The

GME meta-model can also express various constraints such as cardinality, association

attributes etc. The meta-modeling approach can successfully specify the structural

semantics of DSMLs in some cases, but does not define semantics in general.

40

3.4 Stopwatch and Timed Automata

This section reviews the operational semantics of Stopwatch Automata (SA) and

Timed Automata (TA). Given a finite set of clocks C a valuation for the clocks is a

function v : C → R≥0 that assigns a value for each clock from the domain of non-

negative real numbers. The valuation of clock ci ∈ C is denoted vi. B(C) is the set

of clock guards γ, that are of the form ci � N, ci − cj � N, � ∈ {=, <,>,≤,≥}. A

valuation v satisfies clock guard γ, if for all expressions in γ vi � N, vi − vj � N is

satisfied, respectively. Time progress is captured as clock ct with a constant rate of 1

(v̇t = 1). The initial value of ct is denoted vt0 , and vt0 = 0.

Definition 3.1 A stopwatch automaton is a tuple SA = (L, l0, C, E, Act, Inv) con-

sisting of the following components:

• a finite set L of vertices called locations;

• the initial location l0 ∈ L;

• a finite set C of real-valued clocks;

• a finite set of edges E ⊆ L × B(C) × Act × 2C × L called transitions, where

〈l, γ, α, λ, l′〉 ∈ E;

• a labeling function Act : L×C → {0, 1}, that defines the rates of clocks (ci ∈ C)

in locations as differential functions v̇i = kl, where kl is a constant 0 or 1 in

each location;

• a labeling function Inv : L→ B(C), that is called the invariant of the location.

Definition 3.2 A state of the stopwatch automaton is defined as a pair (l, v) where

l ∈ L and v is the valuation of the clocks in C. The set of states is denoted S.

41

Definition 3.3 The semantics of a stopwatch automaton SA = (L, l0, C, E, Act,

Inv) is given as a transition system TSA = (S, s0,→) where S is the set of states,

s0 is the initial state, and the step relation → is the union of the jump (discrete)

transitions:

• (l, v)
j−→ (l′, v′) if ∃〈l, γ, α, λ, l′〉 ∈ E such that γ and Inv(l′) are satisfied and

v’ = α,

and flow (continuous) transitions:

• (l, v)
f−→ (l, v′) such that for each v′i ∈ v′, v′i = vi + x · Act(l, ci), where x ∈ R+

and Act(l, ci) is the labeling function that defines the rate of clock ci as either

0 or 1 as introduced in Definition 3.1 (v̇i ∈ {0, 1}).

A run of the SA is a finite or infinite sequence of alternating discrete and continuous

transitions of TSA: ρ : s0
j−→ s1

f−→ s2
j−→ s3 . . . or ρ : s0

f−→ s1
j−→ s2

f−→ s3 . . .

Definition 3.4 A timed automaton is a subclass of stopwatch automaton, where the

rates of clocks are set to constant 1 (∀l ∈ L)(∀c ∈ C)Act(l, c) = 1.

42

Chapter 4

A Formal Semantic Domain for Distributed Real-time
Embedded Systems

This chapter describes the Analysis Language for Distributed, Embedded, and Real-

time Systems (Alderis) Domain-specific Modeling Language (DSML), that drives

the proposed model-based design framework, and the underlying DRE Semantic

Domain used for the analysis. We describe the syntax of the Alderis DSML in

Section 4.1 based on set theory. Alderis is defined by meta-modeling using the

Generic Modeling Environment (GME) tool as described in Section 4.2.

The semantics of Alderis is based on the DRE Semantic Domain, a for-

mal framework that specifies elements commonly found in Distributed Real-time

Embedded (DRE) systems. We formally specify the DRE Semantic Domain in

Section 4.3 based on the Timed Automata (TA) Model of Computation (MoC). We

then describe the DRE Semantic Domain as a Discrete Event (DE) system in Sec-

tion 4.4. Using the DRE Semantic Domain to specify the operational semantics

of the Alderis DSML we define a formal MoC, that we refer to as DRE MoC.

The advantage of having both a TA and DE representation of Alderis models is

the possibility to pick the right formalism for a given problem. For example, the real-

time verification method described in Chapter 5 utilizes the TA formalism to show the

schedulability of Alderis models, but the performance estimation method described

in Chapter 6 builds on the DE model for a Discrete Event Simulation (DES)-based

performance analysis.

43

4.1 The Alderis Domain-specific Modeling Language

This section describes the abstract syntax of the Alderis DSML. We propose a

platform-based analysis of DRE systems consisting of two major aspects: dependency,

which describes various relations and dependencies between tasks, and platform,

which specifies the platform that executes the tasks. We capture both these as-

pects in Alderis by specifying the event flow between tasks and their mappings to

machines.

4.1.1 Abstract Syntax

The Alderis DSML is a 6-tuple A = {T,C, TR, TH,M,D} where:

• T is a set of tasks,

• C is a set of communication channels: C ⊆ T ,

• TR is a set of timers: TR ⊆ T ,

• TH is a set of execution threads,

• M is a set of machines that execute threads.

• D is the task dependency relationship: D ⊆ T × T .

The Alderis DSML aims to model how a set of tasks T = {t1, t2, . . . , tn}, n ∈ N

is assigned to execute on a set of machines M = {m1,m2, . . . ,mq}, q ∈ N in a multi-

threaded environment.

Tasks are assigned to execute on exactly one execution thread. Each thread is

assigned to exactly one machine. Tasks are assigned to an execution thread by the

mapping thread(tk) : T → TH. Execution threads are assigned to machines by the

mapping machine(thl) : TH →M . Tasks are attributed by the following properties:

44

• wcetk is the Worst Case Execution Time (WCET) of the task tk ∈ T specified

by the mapping wcet: T → N,

• bcetk is the Best Case Execution Time (BCET) of the task tk ∈ T specified by

the mapping bcet: T → N,

• dlk is the deadline of the task tk ∈ T specified by the mapping dl: T → N,

• pk is the priority of the task tk ∈ T specified by the mapping p: T → N,

• spk is the sub-priority of the task tk ∈ T specified by the mapping sp: T → N.

The execution of tasks is modeled as an execution interval given by [bcetk,wcetk].

When the execution time is constant, bcetk =wcetk. bcetk denotes the shortest exe-

cution time, wcetk denotes the longest execution time of task tk.

Channels in set C can be viewed as special tasks that (1) buffer events as First

In First Out (FIFO) channels, and (2) represent communication delays. They are not

required in the models as tasks can exchange events directly, but provide a mechanism

to reduce blocking waits. For each channel ∀cd ∈ C we refer to bcetd as the best case

delay, wcetd as the worst case delay.

We introduce a (hypothetical) execution thread thc ∈ TH that can execute an

unbounded number of tasks at the same time. We express delays between tasks tk

and tj, {tk, tj} ∈ D by introducing a channel cd ∈ C that has an execution interval

[bcetd,wcetd] as specified by the delay, and we assign cd to the execution thread thc

using the mapping thread(cd) = thc, and add the dependencies {tk, cd}, {cd, tj} to the

set D. Note that we only map channels to the hypothetical execution thread in order

to express delays as non-preemptive executions in a formal setting, we do not restrict

the actual implementation of event channels.

Note that when AND semantics are allowed, all parents need to finish their execu-

tion to trigger the execution of the (dependent) child task. This implies that events

45

from parents that send events at a higher rate need to be continuously discarded to

avoid buffer overflows. Therefore, at this stage of development, we only allow OR

semantics for task dependency; any parent task can trigger the execution of the (de-

pendent) child task. This restriction prevents buffer overflows in tasks that depend

on parents, that send events with different rates.

Timers in the set TR are special tasks that trigger the execution of tasks periodi-

cally. For each timer ∀trk ∈ TR, wcetk =bcetk, and we refer to the constant execution

time as period.

We define the set of dependencies D = {(ta, tb), (tc, td), . . . , (tm, tn)}. Dependencies

model partial ordering in the model, if the dependency (tk, tj) is part of the set D then

task tj has to execute after task tk has finished. We say that task tj depends on task tk.

A task may depend on several tasks and execute several times during the execution

of the model. Moreover, we assume that there are no circular dependencies between

tasks. Therefore, if task tk depends on task tj, then task tj does not depend on task

tk. D is acyclic (a forest) with timers as root elements. We define the semantics for

dependencies in Section 4.3 and Section 4.4.

Figure 4.1 shows an example DRE model created using the GME tool [61]. Timers

are represented by the timer icon, tasks by the T icon, channels by C, threads by

the thread icon, and machines by the processor icon. The solid arrows show the

dependencies (set D) in the model. The mapping of tasks and timers to threads (the

function thread(tk) : T → TH) and the mapping of threads to machines (the function

machine(tk) : TH →M) are shown by the dashed arrows. Channels are not mapped

to any threads as they are executed non-concurrently. Since there is only one thread

assigned to each processor, the model utilizes non-preemptive scheduling.

46

Figure 4.1: Example DRE Model

4.2 Specifying the Alderis Domain-specific Modeling

Language by Meta-modeling

We build on the concept of Model-integrated Computing (MIC) to specify the Alderis

DSML in the GME tool by meta-modeling. Meta-modeling allows to define the abstract

syntax of a DSML, and in some cases even the structural semantics, as described in

Section 3.3. We have defined the abstract syntax of the Alderis DSML in Sec-

tion 4.1.1. This section describes how meta-modeling can provide a visual modeling

language that adheres to the formal specification defined in Section 4.1.

Figure 4.2 shows the meta-model for the Alderis DSML using the GME meta-

model, which is a variation of Unified Modeling Language (UML) class diagrams.

Types for classes are specified as stereotypes for classes. Atoms are simple objects

that have no internal structure, and cannot contain other objects. Models are abstract

objects that represent entities that may have an internal structure. A model is a

47

Figure 4.2: Meta-model for Alderis specified in GME

parent of all the objects it contains. Parts of a model may communicate through

ports; which provides an abstraction to express hierarchy. Between atoms and models,

connections may be defined, that are associations that may contain further attributes.

For example, guards on a transition may be expressed as attributes for a connection.

The GME meta-model can also express generalization, association and composition as

well. Objects in GME are represented as a tree, where each model is a parent of its

parts.

The DRESystem model shown in Figure 4.2 is the root model, that expresses the

6-tuple A defined in Section 4.1.1. DRESystem contains the Node abstract class, and

the Timer, Channel and Task atoms inherit from the Node atom abstract class. The

48

Task, Channel and Timer atoms correspond to T \ C \ TR, C, TR as defined in

Section 4.1.1. Inheritance – a concept commonly used in software engineering – has

traditionally been hard to express using set theory. To alleviate this problem, we

defined TR, C ⊆ T , and we refer to the T \ C \ TR set as the Task class in the

Alderis meta-model (i.e. Channels and Timers are not tasks in the Alderis GME

model, but are tasks in the formal definition of the Alderis abstract syntax in

Section 4.1.1).

The Thread and CPU atoms represent sets TH and M in Section 4.1.1. The task

dependency relationship D ⊆ T × T is expressed as a set of connection using the

GME meta-model (TimerToChannel, TimerToTask, ChannelToTask, TaskToChannel,

TaskToTask, shown in gray in Figure 4.2). This approach allows GME to express

constraints, such as that no connections are allowed from timers to timers, from

channels to timers or channel, and from tasks to timers. These constraints not only

express abstract syntax, but also structural semantics, as they provide rules for well-

formed models. The thread(tk) : T → TH and machine(thl) : TH → M mappings

are defined as the ThreadMapping and TaskMapping connections in the Alderis

meta-model shown in Figure 4.2.

The Alderis GME model can also express hierarchy; the Component model can

contain groups of Tasks and Channel, as well as connections between them. Com-

ponents have input and output Ports, and communicate through their ports. Con-

nections TimerToPort, ChannelToPort, TaskToPort, PortToChannel, PortToTask

shown in gray in Figure 4.2 all extend the task dependency relationship D to hierar-

chical models. We did not formalize hierarchy in Section 4.1, as it is not required for

formal analysis, rather it is just a convenience for designers. Therefore, Components

and Ports are not part of the formalism, but can be used within the Alderis DSML.

Hierarchical models can be flattened out for formal analysis if needed.

The Dependency, Platform aspects can be used to constrain the visibility of certain

49

modeling constructs. For example, the dependency aspect captures Tasks, Channels,

and Timers together with the task dependency relationship. The platform aspect, on

the other hand, expresses the ThreadMapping and TaskMapping connections in the

Alderis meta-model. The Dependency and Platform aspects define the event-driven

communication within Asynchronous Event-driven Distributed Real-time Embedded

(AEDRE) systems, as well as the mapping of tasks to a distributed platform.

4.3 Specifying the DRE Semantic Domain by Timed

Automata

This section formalizes a computational model that can express AEDRE systems for

real-time analysis. The proposed MoC is Timed Automata (TA), as defined in Sec-

tion 3.4. We refer to the proposed semantic domain as the DRE Semantic Domain.

We chose TA as the underlying MoC for our analysis since it has formally defined se-

mantics [6], is supported by several automated model checking tools [26, 15], and is

expressive enough to capture the dynamics of a wide class of DRE systems. Using

the DRE Semantic Domain to specify the operational semantics of the Alderis

DSML we define a formal MoC, that we refer to as DRE MoC.

The DRE Semantic Domain can be used to model basic components in DRE

system such as timers, dynamic computation tasks, event channels, and schedulers.

DRE system models can be built by the composition of these components.

The TA models introduced in this section are based on the Uppaal model of

TA [12]. Uppaal extends the generic TA model [6] with various constructs such as

constants, integers, committed and urgent constraints on locations, networks of TA

and events broadcasted and unicasted between automata.

In the Uppaal model, locations denoted by the C letter represent committed

locations, and location denoted by the U letter represent urgent locations. Both

50

constraints imply that time cannot pass in that location; either an outgoing transitions

must be taken as soon as the automaton enters the location, or the model deadlocks.

The difference between committed and urgent locations is priority; if both committed

and urgent locations are entered simultaneously in a model, outgoing transitions from

the committed location(s) will be taken before outgoing transitions from the urgent

location(s). Please see [12] for a discussion on the Uppaal model of TA.

In this section we use the Uppaal TA model as the extensions are very useful

for modeling practical DRE systems. The Verimag IF toolset also introduces useful

constructs such as integers, priorities between transitions, FIFOs for communication

between automata, monitor automata etc. The reason we use Uppaal in this section

is due to Uppaal’s graphical syntax (IF uses a textual specification), that allows a

compact representation of the TA models.

4.3.1 Timers

A timer in the DRE Semantic Domain is a simple periodic event generator that

broadcasts events at a specified rate. Timers may represent sensors sampled at a

predefined rate. In the generic setting we assume that clocks are synchronized. This

restriction may be relaxed to clocks that may drift arbitrarily, as long as the drifts in

timers are bounded. Timers can be represented by a generic timed automaton model

shown in Figure 4.3.

The timer construct uses one clock, ce to measure time. Whenever ce reaches

bcperiod, the self-transition becomes enabled, and can be taken non-deterministically

(i.e. it may be taken, but is not required). The invariance constraint (ce ≤ period)

imposes a constraint on the location; the valuation of ce cannot be higher than period.

Therefore, the transition must be taken when ce reaches period. The guard on the

transition together with the invariance essentially imposes that the transition will be

taken between [bcperiod, period] time. When the transition is eventually taken,

51

Figure 4.3: Uppaal Timed Automaton Model for a Timer

the ce clock is then reset to zero again, and a publishi event is broadcasted to other

automata.

While this timer model can express drifting timers in theory, using the [bcperiod,

period] interval to specify when the timer broadcasts events, drifting timers incur a

significant performance hit on the analysis. In most practical cases, it is desirable to

use synchronized clocks for the analysis. Note that synchronized timers do not imply

the use of Time-triggered Distributed Real-time Embedded (TTDRE) systems, as the

execution of tasks is not synchronized, only the timers that drive the computations.

4.3.2 Non-preemptable Tasks

Tasks are the main components in DRE systems that carry out computations and

interact with the physical environment. Tasks are enabled by release events that

may be received from other tasks, event channels, or at regular intervals from a timer.

Tasks in the DRE Semantic Domain do not model the actual computations carried

out by tasks, just the time required for computations and their respective deadlines.

Figure 4.4 shows the Uppaal TA model of a non-preemptable task. The task

consists of 5 locations; the idle location is the initial location, wait represents when

the task is enabled, but is waiting to be scheduled for execution, run represents the

executing task, send is a committed location, and finally the error location represents

52

Figure 4.4: Uppaal Timed Automaton Model for a Non-preemptable Task

deadline misses.

The automaton utilizes two clocks; cd measures the time from the enabling event to

the completion of the execution. cd is referred to as the deadline clock, as it is used to

measure whether the deadline is exceeded at any point during the task’s execution. ce

is referred to as the execution clock, and measures the time spent in the run location,

thus modeling the time that the task spends executing.

We now discuss transitions in the automaton to explain how Figure 4.4 models the

execution of a non-preemptive task. The idle → wait transition is triggered when the

task receives the task release event, which enables the task’s execution. The transition

resets cd to zero, and signals that the task is enabled for execution by setting the flag

in the en[] array.

The wait → run transition is triggered by the start event broadcasted by the

scheduler, and resets the ce clock to zero. The run → send transition gets enabled

when the ce clock is equal to or higher than bcet. The ce ≤ wcet invariance forces

53

the transition to be taken, and the guard and invariance together enforce that the

run → send transition will be taken in the [bcet, wcet] interval on the ce clock. This

is how the TA models execution intervals. The run → send transition broadcasts a

start event, that triggers the idle → wait transitions of dependent tasks through

the release event. The send location is committed, and therefore the send → idle

transition will be taken immediately, a finish event is sent to the scheduler to notify

it that the task finished its execution, and the flag in the en[] array is reset. The

send location is necessary since the automaton broadcasts two events, start and

finish, and therefore we break up the transition to two transition, connected by the

committed send location.

The transitions to the error location become enabled whenever cd reaches the dl

deadline, or if a task receives another release event while processing another event.

The channel and buffer constructs described in Section 4.3.4 and Section 4.3.5 must

be used to buffer events if there is a possibility that the task may receive a release

event while processing another request.

To reduce the state space, we set the error location to be committed. Time

cannot pass in committed locations in Uppaal; either a transition must be taken,

or the model deadlocks. By using this constraint we introduce a useful side effect;

whenever a timed automaton reaches the error location time cannot advance in that

automaton. Since we cannot leave that location, the TA model will deadlock. This

approach turns the real-time schedulability problem to reachability analysis; the task

is schedulable iff the TA model does not deadlock, which implies that the error location

is not reachable.

4.3.3 Preemptable Tasks

Clocks in TA cannot be stopped or resumed, only reset. Therefore, TA cannot model

preemptable tasks inherently. Stopwatch Automata (SA) [77] were proposed as a

54

Figure 4.5: Uppaal Timed Automaton Model for a Preemptable Task

MoC that can express preemptable tasks in asynchronous event-driven systems. SA

can express linear Hybrid Automata (HA) [22], and the reachability analysis on SA is

undecidable in general, since it can be mapped to the halting problem [55].

Chapter 7 describes a novel method for the model-checking of schedulability in

Preemptive Event-driven Asynchronous Real-time Systems with Execution Intervals

(PEARSE). We approximate the Task Stopwatch Automaton (TSA) shown in Fig-

ure 7.1 with the Task Timed Automaton (TTA) shown in Figure 7.4.

The Uppaal preemptable task model shown in Figure 4.5 is a syntactically more

compact representation of the TTA model shown in Figure 7.4, but expresses the same

idea for approximation, and is a direct result of our work on the approximation of SA

by TA described in Chapter 7.

The Uppaal model for a preemptable task consists of 6 locations. The idle, wait

and error locations are no different than in the non-preemptive task model shown in

55

Figure 4.4.

The et variable represents the discrete portion of the execution clock, denoted

as x is the index of locations runx,y in Definition 7.2 and in Figure 7.4. The pre

variable represents the number of preemptions encountered, denoted as y is the index

of locations runx,y in Definition 7.2 and in Figure 7.4. Thus, we encode the runx,y

locations in Figure 7.4 as two integer variables. The pr variable defines the precision

of the approximation, and is denoted as time unit tu in Figure 7.4.

The approximation is implemented as follows. The run location represents the

executing task. Whenever ce reaches the time unit pr, the automaton moves to

the pass committed location, and thus right back to the run location. The pass

location models as the automaton saves the “checkpoint” time unit in the et integer.

et is incremented by the time unit pr, the real-valued clock ce is reset, and the

execution continues. Whenever the automaton receives a preempt event in the run

location, it moves back to the wait location, modeling preemption. The run → send

transition is enabled in the [bcet - pre, wcet] interval on the et + ce clock (denoted as

vx = vta + x) in Definition 7.2), to compensate for the BCET imprecision as described

in Proposition 7.3. The error location is reachable if cd reaches dl - pre. pre is used

to compensate for the WCET and dl imprecision of the approximation, as defined in

Proposition 7.2 and Equation 7.6.

4.3.4 Event Channels

Event propagations between tasks follow the Uppaal TA non-blocking broadcast

semantics, i.e., events that are not received (and therefore lost) are not regener-

ated since received events are not acknowledged. To provide a reliable event service,

therefore, event passing must be synchronized between the publisher and consumer

tasks. To alleviate these restrictions, communication between tasks are coordinated

through event channels that provide the mechanisms to allow reliable asynchronous

56

Figure 4.6: Uppaal Timed Automaton Model for a Channel

communication, where publishers do not block until the consumer receives the event.

Instead, published events are queued in the event channel until the consumer is ready

to receive them.

Figure 4.6 shows the generic Uppaal model of the event channel, and consists of

only two locations, idle and wait. The event channel can express delays as intervals,

and acts as an agent between two tasks, or a timer and a task. The event channel

has only one clock, ce that is used to model the delay.

The source timer or task triggers the idle → wait transition by broadcasting the

release event. The event channel buffers the received event in the bufferc integer

variable. The wait location represents the delay of the channel. If more release

events are received in the wait location, the channel stores them in bufferc.

One of the wait → idle transitions becomes enabled in the [bcdelay, delay interval.

If the dependent task of the channel is in the idle location and ready to process the

event from the channel, then then corresponding en[] flag is false, and the channel will

broadcast the event (publishi, and remove the event from bufferc. If the dependent

task is not in the idle location, then the channel moves back to idle, and the event

remains stored in bufferc.

When the dependent task finishes its execution, it notifies the channel through the

57

Figure 4.7: Uppaal Timed Automaton Model for a Buffer

finishi event. If bufferc is not empty, the channel moves to wait as it tries to resend

the event.

4.3.5 Buffers

The buffer modeling construct shown in Figure 4.7 is a special event channel that

has no delay. Buffers represent events passed between tasks within the same thread

(i.e. interprocess communication). The buffer ensures that the event will be delivered

before the scheduler is invoked, and leaves no possibility for a race condition.

Buffers do not have a clock, as they do not model time. Transitions in the buffer

are instantaneous. Similar to the channel, a buffer can store events in bufferc if the

dependent task is busy serving another task, and can buffer multiple events.

4.3.6 The Scheduler

The scheduler models the mapping of tasks to a distributed execution platform. In

the approach proposed in this dissertation, the scheduler is automatically synthesized

from the priority (p: T → N) and subpriority (sp: T → N) mappings defined for

Alderis in Section 4.1.

58

Figure 4.8: Uppaal Timed Automaton Model for a Scheduler

Figure 4.8 shows the TA model of a simple fixed-priority scheduler, that manages

the scheduling on a single non-preemptive processor. The scheduler starts in the idle

location, and observes all the input events of tasks, since the scheduling decision can

only follow an enabling event. If any task managed by the scheduler receives an input

event, the scheduler moves to the select location. The select location is urgent, and

therefore the scheduling decision may not advance the clocks, but will only follow

the committed locations in other elements of the DRE Semantic Domain. This

choice ensures that all events will be delivered to tasks before the scheduling decision

is invoked.

Depending on how many tasks the scheduler manages, it has a corresponding

schedule. . . location for each task. The en[] array is used to define the scheduling

policy; by observing which tasks are enabled for execution, the scheduler selects one

task for execution. Determinism in the scheduler is important as it increases the

analysis scalability.

The scheduler shown in Figure 4.8 implements a simple fixed-priority scheduling

policy; if Task2 is enabled, it will be selected for execution, if Task1 is enabled and

Task2 is not, then Task1 will be scheduled for execution. If both Task1 and Task2

59

are enabled, Task2 will be scheduled for execution, as only the guards on the select

→ scheduleTask2 transition evaluate to true in that case. Therefore, the scheduling

policy is deterministic.

Complex preemptive policies can also be synthesized using TA. Since TA is an

extension of Finite State Machines (FSMs) with real-valued clocks, it can practically

express any scheduling policy that can be expressed as a FSM, but can also incorporate

time constraints in the scheduling policy. In this dissertation, we use fixed-priority

scheduling for the case studies.

4.3.7 Modeling Constraints

This section introduces a set of constraints for well-formed models based on the DRE

Semantic Domain.

• Task to Task connections must be one-to-many. Events are broadcasted from

the source to every dependent. If multiple events are sent to the same task,

however, events will be dropped, which is a failure we want to avoid.

• Task to Channel connections must be one to many, which provides a modeling

construct – the event channel – to express one-to-many broadcasting and many-

to-one event consumptions.

• Channels can only have one dependent. Since event channel has only one buffer

it cannot keep track of the buffer of individual tasks.

• Channels can only have one source. We have previously allowed a single task

to broadcast events to multiple channels. If a task A is connected to an event

channel C that channel also receives events from a task B emitting an event from

task A will be received by task B, as well, since connections are unidirectional.

We therefore disable this modeling construct.

60

4.4 Specifying the DRE Semantic Domain as a Discrete

Event System

In this section we define a formal model for event-driven DRE systems using the

concept of DES. We utilize this model to define the formal performance evaluation

problem using a continuous time model. We target AEDRE systems, therefore we

propose a scheduling model, that inherently captures varying communication delays

as special “tasks” with execution intervals. We define the DRE Semantic Domain

on a preemptive platform, but restrict the performance estimation problem described

in Chapter 6 to non-preemptive systems, due to undecidability issues as described in

Chapter 7. Using the DRE Semantic Domain to specify the operational semantics

of the Alderis DSML we define a formal MoC, that we refer to as DRE MoC.

4.4.1 Events

We represent the DRE Semantic Domain as an extension to DE systems in order

to express execution intervals in continuous time. A DE system is a 5-tuple G =

(Q,Σ, δ, q0, Qm), where Q is a finite set of states, Σ is a finite alphabet of symbols

that we refer to as event labels, δ : Q × Σ → Q is the transition function, q0 is the

initial state, and Qm is the set of marker states (exiting states). A transition or event

in G is a triple (q, σ, q′) where δ(q, σ) = q′, q, q′ ∈ Q are the exit and entrance states,

respectively, and σ ∈ Σ is the event label. The event set of G is the set of all such

triples.

In DES, transitions depend only on the current state and the event label. In the

DRE Semantic Domain, we define event labels as time stamped values from the

domain of non-negative real numbers R≥0.

Timestamps model the (global) simulation time when the event has occurred. We

define the function time(e) : E → R≥0 to return the timestamp value of event e ∈ E

61

where E is the set of all (infinite) events generated by the system.

In the DRE Semantic Domain, tasks receive a potentially infinite sequence of

events (timestamped values as event labels) in chronological order. The task then

outputs a timestamped event for each input event. We denote the sequence of input

events of a task tk as Ik = {ik0, ik1, . . . }, the sequence of output events as Ok =

{ok0, ok1, . . . }, t ∈ T, ik0, ik1, · · · ∈ E, ok0, ok1, · · · ∈ E. The order of events in the

output sequence of each task is the same as the order of events in the input sequence

of the task, ok0 is the response for ik0, ok1 is the response for ik1, etc. The timestamps

of input events must be smaller than or equal to their corresponding output events.

We formalize this constraint as follows: (∀tk ∈ T)(∀ik ∈ Ik)(∀ok ∈ Ok) (time (ik)

≤ time (ok)). Note that the discrete event simulation is completely deterministic if

timestamps are unique constants.

Each task can process only one event at a time, for each input event ikx ∈ Ik, the

corresponding output event okx ∈ Ok has to be generated before the task can receive

its next input event iky ∈ Ik. Channels in the set C provide FIFO buffers to store

events that cannot be immediately processed by their target tasks.

The set TR denotes a special class of tasks called timers. A timer tr ∈ TR is a

task that generates output events such that for the timestamp of any two consecutive

events (otr, o
′
tr ∈ E) time(o′tr) − time(otr) = periodtr. We define the period of the

timer as periodtr = bcettr = wcettr.

To distinguish the special classes of tasks from non-special tasks we refer to the

set T \C \TR as the set of computation tasks. Computation tasks model actual tasks

being executed on the threads/machines.

Computation tasks, timers, and event channels in the DRE Semantic Domain

can be composed using events; the output event of a task may serve as an input

event to another task (tasks). In these cases the same event label triggers multiple

transitions. We make the restrictions that timers cannot have input events and the

62

output events of event channel can only be inputs to computation tasks. Moreover,

the event flow has to satisfy the dependencies in set D; if the output of a task t1 ∈ T

is the input of task t2 ∈ T then the dependency (t1, t2) has to be present in set D.

Similarly, if a dependency (ta, tb) is present in set D then the output event of ta has

to be the input event of tb.

4.4.2 Task States, Schedulers

We define three states for each computation task; init, wait, and run. Whenever a

task receives an event from another task (including event channels and timers) the

transition from the init state to the wait state is triggered. We refer to tasks in the

wait state as enabled tasks. Enabled tasks are ready to execute.

We model scheduling policies by utilizing priorities. We model schedulers as dis-

crete event systems that compose with tasks using events. Our model for schedulers

keeps track of enabled tasks by putting them in an execution queue. Whenever the

execution queue is non-empty the scheduler chooses a task (or possibly several tasks)

for execution by generating an event triggering the transition from the wait state to

the run state in the selected task(s). We assume that tasks can distinguish between

events coming from tasks and schedulers in the DRE Semantic Domain. Events

generated by schedulers are also labeled as timestamps.

Figure 4.9 shows a possible DES representation of the DRE example shown in

Figure 4.1. We create a finite state machine model for each task, channel, timer, and

scheduler, that compose using events. We denote input events as e?, output events as

e!. If the output event of a transition is the input event of another transition then the

two transitions are synchronized; their events must have the same timestamps when

the transitions are taken. If two (or more) transitions are synchronized either all of

them has to be taken, or none of them. We model scheduling policies by introducing

priorities between transitions. For example, a simple fixed priority scheduling policy

63

Figure 4.9: Composing Discrete Event Models using Events - Partial Representation
of the DRE Example Shown in Figure 4.1

between tasks ta, tb, tc, and td may be implemented by introducing priorities between

the transitions marked as s1!, s2!, s3!, s4!. The priorities may enforce a fixed execution

order between enabled tasks (a task is enabled if it is in the wait state).

Schedulers in the DRE Semantic Domain may utilize both a preemptive or non-

preemptive scheduling policy. However, we restrict the formal performance estimation

method in Section 6 to non-preemptive systems only.

Each computation task tk ∈ (T \C \ TR) generates an output event with a times-

tamp between [bcetk + time(sk), wcetk + time(sk)] where sk is the event generated

by the scheduler that triggered the transition from state wait to state run in task tk.

In the DRE Semantic Domain every task has to be mapped to exactly one

execution thread (defined as set TH in Section 4.1.1), and every execution thread

must be mapped to exactly one machine (defined as set M in Section 4.1.1). Threads

in the DES model are modeled as a non-preemptive scheduler, while machines are

modeled as a preemptive scheduler between threads. This hierarchical scheduling

model allows to express complex DRE systems.

64

Chapter 5

Real-time Model Checking of Software-Intensive
Distributed Real-time Embedded Systems

This chapter describes how we applied the Analysis Language for Distributed, Embed-

ded, and Real-time Systems (Alderis) Domain-specific Modeling Language (DSML)

defined in Section 4.1 and the DRE Semantic Domain specified as Timed Automata

(TA) in Section 4.3 for the real-time analysis of software-intensive mission-critical

Common Object Request Broker Architecture (CORBA) avionics Distributed Real-

time Embedded (DRE) systems. This section focuses on non-preemptive systems

only, but the proposed method can be composed with the analysis of preemptive sys-

tems. We adapt the TA-based real-time verification method to preemptive systems in

Chapter 7. Using the DRE Semantic Domain to specify the operational semantics

of the Alderis DSML we defined a formal Model of Computation (MoC), that we

refer to as DRE MoC.

A promising infrastructure technology for software-intensive DRE systems is com-

ponent middleware, which defines platform capabilities, and tools for specifying, im-

plementing, deploying, and configuring components [78], and publish/subscribe ser-

vices [41] that exchange messages between components. Components, in turn, are

units of implementation, reuse, and composition that expose named interfaces called

ports, which are connection points that components use to collaborate with each

other. Component middleware helps simplify the development and validation of DRE

systems by providing reusable services, and optimizations that support their func-

tional, and Quality of Service (QoS) needs more effectively than conventional ad hoc

software implementations.

Despite recent advances in component middleware, however, there remain signifi-

65

cant challenges that make it hard to develop large-scale DRE systems, including the

lack of tools for effectively configuring, integrating, and verifying DRE systems built

using components. To address these challenges, it is useful to analyze system behavior

early in the life cycle, thereby enabling developers to select suitable design alternatives

before committing to specific platforms or implementations. In particular, making

these decisions in the design phase helps minimize mistakes that would otherwise be

revealed in the testing and integration phases, when they are much more expensive

to fix. Design-time analysis requires a means of expressing component behavior with

respect to their QoS properties, defining the semantics for component interactions,

and composing components to form subsystems.

In this section we illustrate and validate the concepts of model-based verification

in the context of the Boeing Bold Stroke platform. We build on the Alderis DSML

to model and analyze a complex DRE system, and the open-source Distributed Real-

time Embedded Analysis Method (Dream) framework for the model checking [31] of

real-time properties. In particular, we consider the problem of deciding the schedula-

bility of a given set of Bold Stroke tasks with event- and time-driven interactions. We

represent the task model and scheduling policy via the DRE Semantic Domain.

The TA formulation of the problem translates the schedulability problem into a reach-

ability problem in which the set of tasks are schedulable if none of the corresponding

TA can reach a state that was predefined to express missed deadlines. If this anal-

ysis completes successfully it implies that all tasks complete before their respective

deadlines.

The contributions of this chapter are focused on the following areas:

• We formalize the problem of deciding the schedulability of DRE systems utilizing

fixed priority scheduling using TA in Section 5.1.

• We describe the Boeing Bold Stroke execution framework in Section 5.2, and

describe an approach for the modeling of multi-threaded software intensive DRE

66

systems by utilizing abstractions based on the threading model in Section 5.3.

• Section 5.4 introduces a case study loosely based on the Boeing Bold Stroke

execution platform.

• Section 5.5 describes a model checking method based on TA for the real-time

verification of non-preemptive DRE systems.

5.1 Problem Formulation

We utilize the DRE MoC specified as a TA system in Section 4.3 to define the real-

time verification problem for DRE systems. We use the notation for the sequence

of input events of a task tk as Ik = {ik0, ik1, . . . }, the sequence of output events as

Ok = {ok0, ok1, . . . }, t ∈ T, ik0, ik1, · · · ∈ E, ok0, ok1, · · · ∈ E. We specify deadlines for

each computation task tk using the mapping dk : T → N. Deadlines for each task

and each input event are counted from the timestamp of the input (enabling) event

(time(ik)).

Definition 5.1 (Schedulability): A computation task tk ∈ T is schedulable if it

always finishes its execution before its respective deadline. The error location is reach-

able in the TA model for task iff the computation task does not finish its execution

before its respective deadline. The fact that the error location is unreachable implies

the schedulability of the computation task tk. The DRE MoC is schedulable if all tasks

are schedulable, i.e. if none of the error locations are reachable in the TA model.

Definition 5.2 (Run): A run or execution trace of the DRE MoC is the chronological

sequence of events occurred in the model. A run is valid if it is schedulable, that is

if for all input (ik) and their corresponding output (ok) events in the execution trace

time(ok) < time(ik) + dk, otherwise it is invalid.

67

Figure 5.1: Motivating Example for a Non-WCET Deadline Miss

In event-driven systems it is not enough to consider the worst case times of tasks

in general. It is a fact that the product of local worst case execution times does not

necessarily result in worst case end-to-end computation times. We now demonstrate

this problem in non-preemptive DRE systems to motivate our approach for the real-

time verification of DRE systems.

Consider the example shown in Figure 7.3. Task A is running on machine 1, and

tasks B and C are running on machine 2. Task A starts at time 0, and may finish

its execution time anytime within the [2, 6] interval. Task B starts its execution

whenever task A finishes its execution, and executes for 1 time unit. Task C starts

its execution at time 4, and executes for 1 time unit. We assume that task B has

higher priority than task C, and that the deadlines for task B and task C are 1.2 time

units. The system is schedulable when task A executes for its Best Case Execution

Time (BCET) time as shown in the left of Figure 7.3, and it is schedulable when task

A executes for its Worst Case Execution Time (WCET) time as shown in the middle

of Figure 7.3. However, if task A finishes its execution at time 5.5, task C will miss

its deadline as it has to wait for task B.

Therefore, the analysis has to capture execution intervals in continuous time, oth-

erwise it may lead to false positives, and thus may result in unschedulable designs

that cannot be detected at design time. We solve this problem for non-preemptive

DRE in this chapter by capturing software-intensive DRE systems as TA models for

real-time model checking. In Section 5.2 we describe the software architecture of the

Boeing Bold Stroke execution platform, and describe our approach for modeling Bold

Stroke using Alderis in Section 5.3.

68

5.2 Boeing Bold Stroke Execution Platform

The Boeing Bold Stroke architecture is an event-driven component-based DRE system

platform built atop (1) The ACE ORB (TAO) [90], which implements key Real-time

CORBA [79] features (such as thread-pools, lanes, and client-propagated and server-

declared threading policies), and (2) TAO’s Real-time Event Service [41], which im-

plements the publish/subscribe pattern [19], and schedules and dispatches events via

a federation of real-time event channels (any event channel mentioned in the rest of

the chapter refers to the real-time event channel). Bold Stroke uses a Boeing-specific

component model called PRISM [87], which implements a variant of the CORBA

Component Model (CCM) [78] atop TAO. Following the CCM specification, PRISM

defines the following types of ports, which are named interfaces, and connection points

components use to collaborate with each other:

• Facets, which define named interfaces that process method invocations from

other components.

• Receptacles, which provide named connection points to facets provided by

other components.

• Event sources and event sinks, which indicate a willingness to exchange

event messages with one or more components via event channels.

PRISM operation invocations provides blocking synchronous call/return semantics,

where one component’s receptacle is used to invoke an operation on another com-

ponent’s facet. Conversely, PRISM’s event propagation mechanism provides non-

blocking asynchronous publish/subscribe semantics supported by real-time event chan-

nels connected via event sources/sinks. When a publisher pushes an event to an event

channel all of its subscribed components are notified.

Although the CCM specification allows the dynamic creation and connection of

components, PRISM follows common patterns in safety/mission-critical systems, and

69

Figure 5.2: The Boeing Bold Stroke Execution Platform

enforces a static component allocation and configuration policy by creating and con-

necting components only during system initialization. Dynamical components in

PRISM can reconfigure themselves by changing their behavior based on system mode

settings, such as takeoff mode, landing mode, and threat-evasion mode.

Figure 5.2 shows the runtime architecture of the Bold Stroke execution platform,

which consists of three primary layers: (1) the Object Request Broker (ORB) layer,

which performs (de)marshalling, connection management, data transfer, event/request

demultiplexing, error handling, concurrency, and synchronization, (2) the real-time

event channel layer, which schedules and dispatches events in accordance with their

deadlines and other real-time properties, and (3) the application component layer,

which contain actions that are the smallest units of end-to-end processing that Bold

Stroke application developers can manipulate.

70

Bold Stroke actions are largely event-driven, rather than strictly time-triggered. In

particular, periodic real-time processing of frames is driven by asynchronous software

timers that may drift apart from each other, so component interactions are unre-

stricted and asynchronous. This approach is intentional [29] and designed to increase

flexibility and performance, though it has the side effect of impeding analyzability

and strict predictability.

As a result of Bold Stroke’s event-driven architecture, dependencies between ac-

tions can significantly influence the schedulability of avionics mission computing sys-

tems built atop it. Bold Stroke applications use priority-based scheduling, where ac-

tions that have the same priorities are scheduled non-preemptively in a priority band

(also referred to as rate group) based on their sub-priorities. In this setting, preemp-

tive scheduling is used between priority bands, whereas non-preemptive scheduling is

used within a particular band.

A priority band is implemented by three types of threads: (1) the dispatcher

(worker) threads, which reside in real-time event channels and execute all actions

initiated by event propagations, (2) the interval timeout thread, which pushes timeout

events at predefined intervals, and (3) ORB threads, which continually process request

inputs from the ORB core executing actions initiated by operation invocations. This

concurrency architecture implements the Half-Sync/Half-Async pattern [91], where a

fixed pool of threads is generated in the server at the initialization phase to process

incoming requests. This pattern ensures that Bold Stroke applications incur low

latency and jitter for end-to-end actions [28].

An action has an assigned priority and sub-priority (importance) value for ev-

ery real-time event channel to which it is subscribed. If two actions have the same

sub-priority they will be ordered or scheduled non-deterministically according to the

configuration. Every action has a Worst Case Execution Time (WCET) and a Best

Case Execution Time (BCET) in the given scenario in which it is used. WCETs and

71

BCETs are computed by measuring the times corresponding to executing the tasks

millions of times in a loop, do not include the time spent waiting to be scheduled, and

are assumed to be independent of the scheduling policy. Actions can be initiated by

two ways: operation invocations and event propagations. The Bold Stroke scheduling

strategy is also configurable – by default its actions are scheduled in accordance with

Rate Monotonic Analysis [64].

Facet-initiated actions invoked by a remote operation call inherit the QoS execu-

tion semantics from the invoking component and do not interact with TAO’s runtime

scheduler, which resides inside the real-time event channels. We therefore do not

distinguish these actions from the invoking action in the scheduling perspective. The

smallest unit of scheduling is an event-initiated action together with all the remote

operation calls it can invoke. Since facet-initiated actions can also call other actions

using remote operation calls, the complete call chain is an acyclic graph, with the

event-initiated action as the root element. We call this smallest unit of scheduling an

invocation unit.

An executing action may initiate actions on other priority bands, which are known

as cross-rate actions. All processing inside a priority band must finish within the fixed

execution period of the timer assigned to the band. This periodicity divides processing

into frames, which are defined by the rate/period of the timer. For example, a 20 Hz

timer will have a 50 ms frame and the overall execution time of the tasks in the

timer’s rate group must be smaller than 50 ms to fit within the frame. A priority

band failing to complete outputs prior to the start of the next frame incurs a so-called

frame overrun condition, where the band did not meet its completion deadline, i.e.,

the frame completion time.

72

5.3 Abstractions Based on the Threading Model

The publish/subscribe architecture used in the the Boeing Bold Stroke execution

framework defines two types of mechanisms for data exchange and dependencies.

• Remote method invocations follow conventional two-way function call semantics

when a component issues a call from its receptacle to the target component’s

facet. These two-way facet/receptacle method calls will block if the called

process is already executing, which can degrade performance significantly.

• Event propagations provide a more efficient asynchronous data flow semantics

from event sources to event sinks supported by event channels. The event

channel is built on the Asynchronous Method Invocation (AMI) [9] feature of

the CORBA specification. The event channel is the implementation of an agent

that manages the event passing between tasks. The caller thread A issues the

method call on the event channel and resumes its execution, rather than waiting

for the called thread B to process the event. When the called thread B finishes

the execution it notifies the event channel, which issues the remote method on

thread B as thread A’s agent.

We assume a time interval for the delivery of the events that is independent for

each processor, and is specified by best case delay and worst-case delay. The event

passing between different processors is managed by the remote real-time event chan-

nel. They are modeled by the Channel modeling construct in Alderis and the DRE

Semantic Domain. Race conditions may occur in remote event passing and are an

important issue to be solved by analysis. Event passing on the same processor (same

address space) is managed by local real-time event channels. They are modeled by

the Buffer modeling construct in the DRE Semantic Domain. In this scenario the

ORB delivers the event by invoking local functions - without marshaling/demarshaling

73

the requests. This technique is called a collocation optimization and is implemented

in most CORBA ORBs, including TAO.

Collocated event passing does not follow the strict event passing semantics since

a single thread is used to manage both the event sources and event channels. We

therefore assume that the event channel notifies every task before the scheduler is

invoked, thus there are no race conditions within a thread. This mechanism helps to

enforce fixed priority scheduling for tasks that receive events at the same time and

are deployed on the same thread.

Method invocations inherit the QoS execution semantics from the invoking task

and do not interact with the runtime scheduler. If the caller and invoked tasks are

deployed in the same address space of a processor, the invoked task executes within

the same thread – the dispatcher (worker) thread – as the caller task. If the two

tasks are deployed on separate machines the ORB uses a thread to transparently

forward the method call to a task on the remote machine. This mechanism separates

the scheduling of the dispatcher (worker) thread – which schedules tasks invoked by

event propagations – and the ORB thread – which simply executes remotely invoked

tasks.

The threading model described above provides a way to aggressively abstract out

remote method calls from the model. For local method calls we simply add the

WCET and BCET of the called and caller tasks. For remote method calls, we utilize

non-blocking message passing semantics building on the real-time event channel and

publish/subscribe communication paradigm using AMI.

Remote blocking function calls cannot be trivially expressed in Alderis, and

should be avoided by design. If that is not possible, one option is to add the worst-

case delay of the channel to the WCET of the call chain, and the best-case delay of

the channel to the BCET of the call chain, and assume that the call chain executes

as a single task. This approach assumes that the ORB thread is always ready to

74

serve requests. However, this assumption is overly optimistic in some cases, and

therefore only applicable to soft real-time systems. Designers have the option of

adding more ORB threads or let the ORB’s Portable Object Adapter (POA) manage

dynamic number of threads in the thread pool, but this approach does not guarantee

hard real-time deadlines.

5.4 Non-preemptive Boeing Bold Stroke Application

To illustrate the model-based verification capabilities of Dream, we examine a case

study of a DRE system from the domain of avionics mission computing. Figure 5.4

shows the component-based architecture of this system, which is built upon the Boe-

ing Bold Stroke real-time middleware described in Section 5.2. This application is

deployed on a non-preemptive multi-processor platform.

As shown in Figure 5.3, this application is driven by five Timer components de-

ployed on five CPUs. The GPS and AIRFRAME components are deployed on CPU 1.

When the 1Hz Timer component pushes an event the GPS component will be no-

tified, and scheduled for execution by the OS (operating system) scheduler. The

GPS component then pushes an event to the AIRFRAME component. The OS sched-

uler schedules the AIRFRAME component for execution, which calls back to the GPS

component’s facet using its receptacle to get the actual data required for execution.

The AIRFRAME component pushes an event to each of the NAV STEERING, ROUTES,

TACTICAL STEERING, and NAV DISPLAY components. Since these components are de-

ployed on different processors they are presented in lighter colors in the 1Hz Timer’s

band.

Computations on different processors are driven by their respective timers. Com-

ponents do not necessarily execute with the timer’s rate, however, as seen in the

NAV DISPLAY component’s case. It is executed more often to serve remote requests

75

Figure 5.3: The Bold Stroke Application Model

76

Figure 5.4: The Alderis Model of the Real-time CORBA Avionics Application

than to serve local requests on CPU 3.

Figure 5.4 shows the Alderis model of the real-time CORBA avionics application.

The ALDERIS model does not capture blocking function calls in software. As

described in Section 5.3, Alderis models (1) remote function calls as message passing

using AMI, and (2) local method invocations are simply added to the caller task, since

the two functions execute as a single task on a single thread. The Channel construct

in Alderis models the CORBA event channel construct, which is practically a First

In First Out (FIFO) that allows non-blocking message passing between tasks. We

observe the following key challenges in the Alderis model shown in Figure 5.4:

• Event flow, buffering. Event propagations require buffering of the events (i.e.,

for the AIRFRAME component) and concurrency management between event

77

channels that are publishing to the same component (i.e., between the event

channels that publish events to AIRFRAME).

• Delays. Communication between processors incur delays in the message prop-

agation. Since the delays are not constant, race conditions may occur when a

lower priority task receives an event earlier than a higher priority task, which

can result in priority inversion.

• Composition. The problems above can be summarized as composition chal-

lenges, i.e., the schedulability of individual threads does not guarantee the overall

schedulability of the system.

5.5 Real-time Verification by Timed Automata Model

Checking

We have used the open-source Dream tool to generate the Timed Automata (TA)

representation of the Alderis model shown in Figure 5.4. Dream supports both the

Uppaal and Verimag IF model checkers, as discussed in Chapter 10. In this chapter

we describe results using Uppaal, but the results can be generalized to any TA

model checker. The resulting TA representation can be checked for deadlock-freedom,

bounded buffer sizes, and whether all deadlines are met.

In addition to model checking, Uppaal provides built-in support for manual and

automatic simulation. To improve efficiency, the model checking algorithms in Up-

paal are based on clock constraints equivalence rather than state equivalence. Sys-

tems in Uppaal are modeled as a slightly modified variant of TA [12] as discussed

in Section 4.3, and the specification is expressed in a restricted version of the Timed

Computational Tree Logic (TCTL) [5], which is a temporal logic that can formalize

78

Component CPU Sub-priority WCET BCET Deadline

GPS CPU 1 VERY HIGH 21 14 22
AIRFRAME CPU 1 HIGH 53 33 54

PILOT WAYPOINTS CPU 2 VERY HIGH 37 12 38
ROUTES CPU 2 VERY LOW 18 13 19

NAVIGATOR NAVS... CPU 3 VERY HIGH 32 22 65
NAV STEERING CPU 3 HIGH 49 27 50

DISPLAY DEVICE CPU 4 VERY HIGH 26 18 41
AF MONITOR CPU 4 HIGH 33 14 34
NAV DISPLAY CPU 4 MEDIUM 14 9 74

PILOT CONTROL CPU 5 VERY HIGH 23 19 66
TACTICAL STEERING CPU 5 HIGH 58 47 59

Channel Buffer Size WC Delay BC Delay

nav steering lc 2 0 0
routes lc 2 0 0

tactical steering lc 2 0 0
nav display lc 2 0 0
af monitor lc 2 0 0

nav steering rc 2 2 1
routes rc 2 2 1

tactical steering rc 2 3 1
nav display rc1 2 3 1
nav display rc2 2 3 1
nav display rc3 2 2 1

Table 5.1: Parameters for the Bold Stroke Application Shown in Figure 5.4

statements about system models. The Uppaal semantic domain combines TA with

dataflow semantics that can be used to express interactions between the automata.

Figure 5.5 and Figure 5.5 show the Uppaal TA representation of avionics DRE case

study shown in Figure 5.4, and demonstrates how the DRE Semantic Domain can

represent DRE systems for compositional real-time analysis. The application consists

of 11 computation tasks and 11 event channels, of which 5 are local, and used only

for buffering. The application is deployed on 5 processors. The Timer components

are a simple rate generators which publishes events at a predefined rate. We model

them using Timers in the DRE Semantic Domain.

To satisfy real-time constraints and avoid unnecessary thread spawn delays, the

79

Figure 5.5: Uppaal Timed Automata Models for the Avionics Application Shown in
Figure 5.4 (Part 1/2)

80

Figure 5.6: Uppaal Timed Automata Models for the Avionics Application Shown in
Figure 5.4 (Part 2/2)

81

PRISM component middleware requires dedicated threads for each real-time event

channel. In the DRE Semantic Domain, however, we can abstract out some of

these threads to reduce the number of event channels and thus the state space. We

have to model event channels explicitly (1) when we have to buffer events or (2)

on remote event channels which have measurable delays. All the event channels

satisfy one of the above conditions, except the timer’s event channels that have been

abstracted out in the model.

The scheduling policies are represented by Schedulers in the DRE Semantic

Domain. We define 5 schedulers since the Bold Stroke application is deployed on a 5-

processor architecture. The schedulers get more complex according to the scheduling

policies. The automatic generation of the models provides a safe way to ensure the

correct guard conditions and assignments.

The TA model shown in 5.5 corresponding to the Bold Stroke system shown in 5.4

has been shown to be schedulable by Uppaal. We have checked the system for

deadlocks and missed deadlines by using the following Uppaal macro:

A[] not deadlock

This Uppaal macro checks that eventually every task does not deadlock, i.e.,

reach a state from which no transition is possible and time cannot progress. As

discussed in Section 4.3, we modeled the error locations of tasks as committed, and

therefore the absence of a deadlock implies the schedulability of the model.

If the above reachability macro evaluates to true, therefore, we have proved that

there are no deadlocks in the system and every action always finishes its execution

before the deadline. We also prove that every published event is consumed properly in

the system and the event channels operate with limited buffer size. We have checked

whether the system operates with finite buffer sizes with the TCTL formula:

A[] (Channel.bufferc < Channel.lambdac)

82

Uppaal produces a counter-example for invalid properties, which helps identifying

the source of undesired behavior. Finally, we checked that eventually every task will

execute using the formula:

E<> Task.executing

The performance of the verification depends largely on the number of non-deter-

ministic branches in the event flow, not the number of components. The Alderis

model shown in Figure 5.4 and using the parameters shown in Table 5.1 can be

analyzed in 164 seconds with ∼770 000 KB memory consumption on an Intel Core

i7 920 processor running at 4GHz, using 6GB three-channel memory. Not only is

the model sensitive to dependencies between tasks, but also the actual execution

parameters.

In earlier work [67] we assumed constant execution times for tasks; when the

BCET times equal the WCET times. In this case significant performance speedup

can be observed, as the model can be verified in less than a second with 8 264K

memory consumption. However, as we described in Section 5.1, it is insufficient to

focus on worst-case time analysis in Asynchronous Event-driven Distributed Real-time

Embedded (AEDRE) systems; execution intervals have to be captured in continuous

time for the real-time verification.

To improve the analysis performance, designers must aim to ensure deterministic

scheduling and behavior for critical system tasks. Our experiments confirm that the

complexity grows exponentially with respect to the state space size. Finding the right

abstraction is therefore crucial for tractable verification problems.

5.6 Concluding Remarks

This chapter presented a novel method for deciding the schedulability of non-pre-

emptive DRE systems. We presented an approach for the modeling of software-

83

intensive DRE systems using the Alderis DSML, and utilized the open-source Dream

framework to generate a Timed Automata (TA) representation of the Alderis mod-

els. The proposed method can capture and verify properties of non-preemptive, event-

driven component-based DRE systems that use the publish/subscribe communication

pattern. The verification is automatic, exhaustive, and capable of producing counter-

examples that help pinpoint sources of undesired behavior.

We have applied the proposed method to the Boeing Bold Stroke avionics mis-

sion computing platform, which is representative of state-of-the-practice DRE systems

based on QoS-enabled component middleware. The goal of this chapter was to ver-

ify QoS properties that express the behavior of this DRE system, such as end-to-end

deadlines, graceful degradation, and dependability. Key contributions of this chapter

are as follows:

• We formalized the problem of deciding the schedulability of DRE systems uti-

lizing fixed priority scheduling using TA.

• We described the Boeing Bold Stroke execution framework, and described an

approach for the modeling of multi-threaded software intensive DRE systems by

utilizing abstractions based on the threading model.

• We introduced a case study loosely based on the Boeing Bold Stroke execution

platform, and described a model checking method based on TA for the real-time

verification of non-preemptive DRE systems.

We extend the results of this chapter to preemptive DRE systems in Chapter 7.

Extending the Dream framework is a key part of our future work, which focuses

on expressing the formal, heterogeneous composition of semantic domains to sup-

port better and more robust DRE systems development. The open-source Dream

implementation is available for download at http://dre.sourceforge.net.

84

http://dre.sourceforge.net

Chapter 6

Performance Estimation of Distributed Real-time
Embedded Systems by Discrete Event Simulations

This chapter describes how we applied the Analysis Language for Distributed, Embed-

ded, and Real-time Systems (Alderis) Domain-specific Modeling Language (DSML)

defined in Section 4.1 and the DRE Semantic Domain specified as a Discrete

Event (DE) system in Section 4.4 for the formal performance analysis of Distributed

Real-time Embedded (DRE) systems by Discrete Event Simulations (DES). This

method is applicable to non-preemptive systems only, but can be composed with

the real-time verification of preemptive systems, such as the method introduced in

Chapter 7. Using the DRE Semantic Domain to specify the operational semantics

of the Alderis DSML we defined a formal Model of Computation (MoC), that we

refer to as DRE MoC.

Performance evaluation is a key challenge in the analysis of DRE systems. Major

design parameters that influence performance include real-time properties, such as

task execution times and communication delays, the degree of parallelism in compu-

tations, and the throughput of the communication architecture.

This chapter proposes a Discrete Event Simulation (DES)-based performance eval-

uation method for DRE systems, that employ fixed-priority scheduling. We introduce

a formal model for DRE systems based on discrete event scheduling [21] using the

concept of logical execution time [44], and the Event Order Tree (EOT) shown in Sec-

tion 6.2. Nodes in the EOT represent events, and edges represent causality between

the events. As events may arise non-deterministically, the tree may branch when

different event orderings are possible. The proposed model explicitly captures the

flow of data and communication effects (such as non-deterministic delays etc.) in

85

event-driven systems for dynamic performance evaluation.

In the proposed approach we do not store timed states, like Timed Automata (TA)

model checking methods, just events and constraints on the (global) timestamps of

real-valued events. Note that this approach represents real-time properties in con-

tinuous time. Storing timed states is the most significant contributor to memory

consumption in model checking tools. The proposed method has minimal memory

requirements, providing a way for runtime on-the-fly analysis in adaptable DRE sys-

tems.

In this stage of development we do not address the termination problem, as we do

not try to identify previously visited timed states, but use a constant horizon as a

time limit for the analysis. There are model checking methods that do not have this

limitation in theory, but in practice all model checking methods suffer from the ter-

mination problem due to the state space explosion problem. Our preliminary results

show that the proposed DES-based evaluation method can achieve better coverage in

large-scale DRE systems than alternative methods as shown in Section 6.3. The ab-

stract symbolic model allows better simulation performance compared to the actual

simulations with comparable accuracy, providing an efficient method for design space

exploration. This chapter has the following key contributions:

• We formalize the problem of estimating the end-to-end performance of DRE

systems utilizing fixed priority scheduling using DES in Section 6.1.

• We describe a novel approach for the formal performance estimation of non-

preemptive Asynchronous Event-driven Distributed Real-time Embedded (AE-

DRE) systems based on DES in Section 6.2. This method is applicable to large-

scale designs, and can provide partial results in case the models are too large

for exhaustive analysis.

• Section 6.3 presents a large-scale avionics DRE case study and performance

86

comparisons to alternative methods, such as simulations and TA model checking.

6.1 Problem Formulation

We utilize the DRE MoC specified as a DE system in Section 4.4 to define the per-

formance evaluation problem and schedulability problem for non-preemptive DRE

systems. We use the notation for the sequence of input events of a task tk as Ik =

{ik0, ik1, . . . }, the sequence of output events asOk = {ok0, ok1, . . . }, t ∈ T, ik0, ik1, · · · ∈

E, ok0, ok1, · · · ∈ E. We specify deadlines for each computation task tk using the map-

ping dk : T → N. Deadlines for each task and each input event are counted from the

timestamp of the input (enabling) event (time(ik)).

Definition 6.1 (Schedulability): A computation task tk ∈ T is schedulable if it

always finishes its execution before its respective deadline. The DRE MoC is schedulable

if all tasks are schedulable. We formalize this condition using the DRE MoC as follows:

(∀tk ∈ (T \ C \ TR))(∀ik ∈ Ik)(∀ok ∈ Ok) time(ok) < time(ik) + dk.

Definition 6.2 (Run): A run or execution trace of the DRE MoC is the chronological

sequence of events occured in the model. A run is valid if it is schedulable, that is

if for all input (ik) and their corresponding output (ok) events in the execution trace

time(ok) < time(ik) + dk, otherwise it is invalid.

Definition 6.3 (End-to-end computation time): We define the end-to-end com-

putation time between an input event ijn of task tj and an output event okm of

task tk as the maximum possible difference between the events’ timestamps along

all the possible runs of the model end-to-end(okm, ijn) = max[time(okm)−time(ijn)],

if ∃{(tj, ta), (ta, tb), ..., (tb, tj)} ∈ D. If task tk does not depend on task tj in the DRE

MoC (@{(tj, ta), (ta, tb), ..., (tb, tj)} ∈ D), we define end-to-end(okm, ijn) = ∞.

87

Figure 6.1: Execution Traces of the DRE Model Shown in Figure 4.1

Task tA tB tC tD tE tF

bcet 10 10 10 10 50 70
wcet 10 10 10 10 90 70

deadline 22 25 12 32 100 100

Table 6.1: Timing Information for the DRE Model Shown in Figure 4.1

It is a fact that the product of local worst case execution times does not necessarily

result in worst case end-to-end computation times. We now demonstrate this problem

in non-preemptive DRE systems to motivate our approach for formal performance

evaluation using the simple DRE example shown in Figure 4.1. We define the period

of each timer to be 100 time units, and the delay of each channel to be 0.

Figure 6.1 illustrates the first period of DRE model execution traces shown in

Figure 4.1 using the parameters in Table 6.1. In this example, for most tasks the Best

Case Execution Time bcetk time equals the Worst Case Execution Time wcetk time

to reduce complexity, for easier illustration. We utilize fixed-priority scheduling in

machine 1 between tasks tA, tB, tC , and tD. Tasks tE and tF are executed concurrently

and have their own schedulers. Note that Earliest Deadline First (EDF) scheduling

would result in a deadline miss by task tB, as it scheduled the sequence tA, tC , tB.

This illustrates that EDF is not optimal in the non-preemptive DRE MoC.

The execution trace in the left of Figure 6.1 demonstrates that the system is

schedulable if all tasks execute using their Worst Case Execution Time (WCET). The

trace in the middle of Figure 6.1 shows that the system is schedulable when Best Case

Execution Time (BCET) are considered during the execution trace. However, the trace

in the right of Figure 6.1 shows that task tC might miss its deadline if task tE executes

88

for 71 time units. This example shows that the performance evaluation of event-

driven non-preemptive DRE systems has to consider execution intervals rather than

worst case execution times, and justifies the need for formal performance analysis.

6.2 Performance Estimation of DRE Systems by Discrete

Event Simulations

This section describes the proposed DES-based performance evaluation method for

event-driven DRE systems expressed using the DRE MoC. We introduce the Event

Order Tree (EOT) and show how it can be utilized for performance estimation.

6.2.1 Event Order Tree

Definition 6.4 (Equivalent execution traces): In the DRE MoC two execution

traces are equivalent, if the two execution traces contain the same events, and the

chronological order of events in both execution traces is the same.

Note that for equivalence only the order of events have to be the same, not the

timestamps of events (untimed equivalence). We propose a directed tree representa-

tion for the valid traces of a DRE model, called Event Order Tree (EOT). Each node

in the EOT represents an event and the (global) time constraint on the current event’s

timestamp. The path from the root of the EOT to a node represents possibly infinite

number of equivalent execution traces of a DRE model. There is a directed edge from

node A to node B if event B may be raised after event A, and there are no other

events between them.

Figure 6.2 shows the EOT for the DRE model shown in Figure 4.1 (thicker borders

explained in Section 6.3). Computations in the model are triggered by the timers, that

generate events i1, i2, i5, i6, therefore we label the root as i1i3i5i6. All these events are

89

Figure 6.2: The Event Order Tree of the DRE Example in Figure 4.1 using the
Parameters in Table 6.1

generated at (global) time 0, therefore we represent the constraint on their timestamps

as [0, 0] in the root. The schedulers trigger the execution of tasks tB, tE and tF by

generating the s2, s5, s6 events. We label the immediate child of the root in the EOT

as s2s5s6. Scheduling tasks for execution after they become enabled is instantaneous

in our discrete event scheduler, therefore the time constraint on the timestamps of

events s2s5s6 remains [0, 0]. Although the time constraints in the root and the node

marked as s2s5s6 are identical, there is a causal ordering between them in the DES

model; a task can only be scheduled for execution after it has received an input

event. The causal orderings between events with the same timestamp correspond to

zero-time transitions in other MoCs, such as TA.

Each path in the EOT from the root to the leaves imposes constraints on the

execution intervals of tasks by defining constraints on the timestamps of events. For

example, the path from the root to the leftmost leaf in the same tree requires task

tE to finish its execution after task tD has finished its execution, and before task tF

finishes it execution in the (50, 70) interval as shown by the constraint o5i3(50, 70)

in the EOT. Therefore, the leftmost path in the EOT shown in Figure 6.2 restricts the

90

execution time of task tE to (50, 70).

Definition 6.5 (Branching intervals): We refer to intervals implied by equivalent

execution traces as branching intervals. Branching intervals are always subsets of the

execution intervals [bcetk, wcetk] of tasks.

For example, in the case of task tE its three branching intervals are: [50, 50],

(50, 70), [70, 70] ⊂ [50, 70], as shown by the constraints o4o5i3[50, 50], o5i3(50, 70),

o5o6i2i3[70, 70] in the EOT.

6.2.2 Branches in the Event Order Tree

The execution of the DRE model on machine 1 is deterministic, tasks execute in the

order tB, tA, tC , tD, tD, while tasks tE and tF execute on machine 2 and machine 3 in

parallel. We reach the first non-deterministic choice in the ordering of events after

task tD starts executing for the second time within the period; if task tE executes

for its bcet then tasks tD and tE finish their execution simultaneously (constraint

o4o5i3[50, 50]); otherwise task tD finishes its execution first (constraint o4[50, 50]),

and then task tE finishes its execution. To capture this non-determinism the EOT

has to branch at node s4[40, 40]. In the DRE MoC we also consider race conditions

between tasks assigned to the same machine only if they receive events from tasks

assigned to other machines.

Definition 6.6 (Race condition): If for two tasks tk, tj ∈ T , machine(tk) = ma-

chine(tj)(∃ik ∈ Ik, ij ∈ Ij)(time(ik) = time(ij)), and (machine(ts) 6= machine(tk) ∨

machine(tr) 6= machine(tj), ts ∈ T, tr ∈ T, {ts, tk} ∈ D, {tr, tj} ∈ D then there is a

race condition between task tk and tj.

For example, if tasks tE and tF finish at the same time there is a race condition

between tasks tB and tC . We identify race conditions the following way: whenever

91

a set of tasks receives events with the same timestamp we check whether the tasks

that generated that event are assigned to the same machine as the set of tasks. If

not, race conditions may be present. If race conditions are present between a set of

tasks we have to consider each task to receive its respective event first, therefore in

these cases the EOT has to branch for each task.

Consider the node o5o6i2i3[70, 70] in the EOT shown in Figure 6.2. This node

represents the execution trace where tasks tB, tA, tC , tD, tD execute in this order in

machine 1, and tasks tE and tF finish their execution at the same time. The EOT

branches and we consider both the case when task tB receives its start even first (s2),

or when task tC receives its start event first (s3) due to race conditions.

Definition 6.7 (Branching point): We refer to nodes in the tree, where the EOT

branches due to non-deterministic execution times, or race conditions as branching

points.

6.2.3 Real-time Verification by Discrete Event Simulations

In this subsection we propose a method for the real-time verification of a large class of

DRE models using the EOT. The EOT is a symbolic representation of all distinguishable

execution traces of the DRE model from a timing perspective as we show in this

section. We build on the results of this section to propose a method for the on-the-fly

construction of the EOT in Subsection 6.2.4, providing a way for formal performance

evaluation with a systematic measurement of state space coverage.

Timers in the DRE MoC introduce periodicity in the models. Since the DRE MoC

allows the use of multiple timers with different periods we need to find the least

common multiplier of timer periods, which we refer to as time limit. We make the

restriction that all tasks have to be in the init state when events timestamped with

92

the time limit are generated.

∀(tk ∈ T \ C \ TR) state(tk, time limit) = init (6.1)

This restriction is sufficient, but not necessary for a schedulable DRE model, as in

pipeline architectures the processing of older events may overlap with the processing

of newer events at different stages in the pipeline, therefore we may not reach a

condition where all tasks return to the idle state at once. In pipelined systems we

can either verify the system to a limited horizon – which does not guarantee that

the system will work properly after the time limit – or use other model checking

techniques on the DRE MoC, such as TA, as described in [67, 65, 66]. In the rest of

this section we show that if Equation 6.1 is satisfied, we can verify DRE systems by

exhaustively enumerating all the execution traces corresponding to all paths in the

EOT from the root to the leaves.

Theorem 6.1 (Repeatable property): The EOT of a given DRE model repeats

itself from all its leaves. We refer to this property of EOTs as repeatable.

Proof (outline): We build on Equation 6.1 that tasks have to be in their initial

states (init) when the time limit is reached, that is the least common multiplier of

timer periods. The timers generate the same events that have appeared in the root,

with the timestamps of the time limit. Since there is no relative difference between

the timestamps of events generated by the timers the DRE model can exhibit the same

execution traces as before. �

We only build the EOT until we reach the time limit on the timestamps of events.

For example, the EOT shown in Figure 6.2 repeats itself from all leaves. It is important

to note that even though a DRE system may utilize several timers with different

periods there is only one EOT, rather than a forest. New events generated by faster

timers are considered as branching points or are simply appended to the leaves if no

93

tasks are running when the timer generates a new event.

Theorem 6.2 (Finite number of nodes): There is a finite number of nodes in

the EOT.

Proof (outline): In the DRE MoC a finite number of events are generated with times-

tamps within any interval, because (1) we only consider the boundaries of intervals,

(2) timers generate events at discrete time steps, and (3) each task generates finite

number of output events for each input event. Therefore, each branch has a finite

number of children in the EOT. There is a finite number of branches – at most one for

each executing tasks, and one for each enabled task that may be in race conditions.

Since there is a finite number of branches and each branch has a finite number of

children, the EOT has a finite number of nodes. �

Theorem 6.3 (Worst case execution trace): We define the worst case execution

trace of equivalent execution traces as the execution trace where tasks produce output

events with maximum value timestamps from their branching intervals (as introduced

in Definition 6.5). If the worst case execution trace of equivalent execution traces is

valid, then all equivalent execution traces are valid.

Proof (outline): The order of events in equivalent execution traces is fixed. There-

fore, none of the tasks is forced to wait for longer when the execution times of some

tasks are decreased, than when execution times are left unchanged. None of the tasks

generate events with timestamps larger than in the worst case execution trace, oth-

erwise the ordering of events would change. If the worst case execution trace is valid,

then all equivalent traces are valid, since tasks within those execution traces generate

events with timestamps less than or equal to the worst case execution trace, therefore

they do not violate their deadlines. �

We have shown that the EOT has a finite number of leaves, therefore DRE models

have finite number of equivalent execution traces. We have also shown that the real-

94

time properties of equivalent execution traces can be verified using a single discrete

event simulation. The set of paths in the EOT from the root to the leaves gives all the

possible equivalent execution traces of a DRE model. The exhaustive discrete event

simulation of all the possible equivalent execution traces in the EOT of a DRE model

consists of a finite number of discrete event simulations, therefore it is a valid method

for the real-time verification of DRE models that satisfy Equation 6.1.

6.2.4 On-the-fly Detection of Branching Points in the Event Order Tree

This subsection describes how we can detect branching points at runtime, providing

a way for the on-the-fly construction of the EOT. By enumerating all execution traces

corresponding to the paths from the root of the EOT to the leaves, we can estimate

the system’s performance with 100% coverage. However, the exhaustive analysis of

large-scale DRE systems is most often infeasible in practice due to the state space

explosion problem. Therefore, in most practical scenarios we cannot build the whole

EOT in advance due to storage constraints, and we can only enumerate some paths of

the EOT due to time constraints. In these cases we obtain results using a partial state

space search, and therefore we cannot guarantee their correctness. We can, however,

achieve better coverage and confidence than with the existing methods, as shown in

Section 6.3.

There are two major ways for building and analyzing the EOT. The first option is

to build the EOT in a Breadth First Search (BFS) fashion. The BFS-based approach

stores the EOT in the memory, and iteratively build the tree from the leaf-candidates.

This approach requires that we store timing information (and times states) for all

leaf-candidates of the EOT in order to quickly restore the timed state of the system

corresponding to the actual leaf-candidates, and check for deadlines and end-to-end

computation times. The BFS-based approach has significant memory overhead, and

resembles an exhaustive model checking method.

95

Algorithm 6.1 Obtaining and Enumerating the Event Order Tree by Discrete Event
Simulations
1: create the (empty) superset of race conditions R
2: set the execution time for all tasks tk ∈ T to their wcetk time, and the next

execution time for all tasks to their bcetk time, respectively (∀tk ∈ T exec timek

= wcetk, next timek = bcetk)
3: // enumerate all branching intervals
4: for all permutations of exec timek assignments, obtained using the next timek

variables do
5: clear the superset R
6: call discrete event simulation () described in Algorithm 6.2
7: // enumerate all race conditions with the current exec timek assignments
8: for all permutations of events in superset R do
9: call discrete event simulation () described in Algorithm 6.2

10: end for
11: end for

In this section we propose a Depth First Search (DFS)-based approach to obtain the

EOT. The DFS-based approach has minimal memory overhead, as it does not store the

EOT in the memory. We detect branching points in the EOT during simulation traces,

and then use this information to direct the discrete event scheduler to iteratively

explore unique paths in the EOT.

Note that although there are several model checkers that implement a BFS-based

or/and a DFS-based search algorithm to enumerate symbolic state spaces, they are

optimized to check simple properties using some logic – such as Linear Time Logic

(LTL) [75] or Computational Tree Logic (CTL) [25]. For the evaluation of embedded

systems designers often want to find the maximum/minimum value of certain design

parameters, or simply check whether the system performance gets better or worse

when they change a design parameter. These conditions often require multiple model

checker runs in order to translate these properties into a set of yes/no questions,

which becomes impractical, cumbersome, and time consuming.

The key problem that we need to address is to detect branching points at run-

time, and then exploit this information to construct new directed simulation traces

in the future that enumerate traces representing unique branching intervals. We now

96

describe a simple and practical approach to address this problem.

In our implementation all events are globally observable, and each task detects

its own branching intervals. As we discussed in Definition 6.5, branching intervals

are always subsets of the execution intervals [bcetk, wcetk] of tasks, since the order

of events in an execution trace can only change if an event is raised earlier/later

than another event. Moreover, all branching intervals represent different orderings of

events, therefore we only need to consider events within the [bcetk, wcetk] intervals of

tasks to detect all branching points. Also, as described in Section 6.2.2, we consider

race conditions in the models as well. During a single execution trace, whenever we

encounter a race condition between events using Definition 6.6, we add the events in

a set, and then add the set to the superset containing all sets of race conditions. For

each event in a set we need to consider the possibility that it is executed first due to a

race condition, and we need to consider all permutations between the sets in the su-

perset. We detect all events on-the-fly during simulations, and check all their possible

permutations at the boundaries of branching intervals, therefore we enumerate all the

paths in the EOT. Algorithm 6.1 describes our algorithm for generating all permuta-

tions of events by iterative simulations. Note that we do not set all tasks’ execution

times to their next exec time simultaneously, rather we generate all permutations.

6.3 Practical Application to Software-Intensive DRE Systems

In this section we evaluate the proposed DES-based performance estimation method as

implemented in the open-source Distributed Real-time Embedded Analysis Method

(Dream) tool. Figure 6.3 shows the first case study used for the performance es-

timation. The DRE model is loosely based on a real-time Common Object Request

Broker Architecture (CORBA) avionics application implemented in the Boeing Bold

Stroke execution framework described in Section 5.2.

97

Algorithm 6.2 function discrete event simulation ()

1: run directed discrete event simulation, during which each task stores its start time
as startk

2: during the simulation all tasks tk observe events ei that are raised in the [startk

+ bcetk, startk + exec timek] interval
3: if startk + next timek < time(ei) then
4: // we have encountered a branching point in the (bcetk, wcetk) interval
5: store the value of time(ei) - startk in the next timek variable
6: else
7: do nothing, event will be considered in subsequent simulations
8: end if
9: // find all race conditions with the current exec timek assignments

10: for all race conditions detected between events ei, ej, . . . ek during the simulation
do

11: search for the set containing events ei, ej, . . . ek in superset R (from Algo-
rithm 6.1)

12: if the set is found then
13: do nothing
14: else
15: add the set S = {ei, ej, . . . ek} to the superset R
16: end if
17: end for

The model consists of 98 tasks (including channels and timers) and 57 dependencies

between tasks. Execution parameters for timers and channels are given in Table 6.2,

and for computation tasks in Table 6.3.

Our approach for the modeling of the Bold Stroke framework is described in [67].

The case study shown in Figure 6.3 is described in [69], and is distributed with the

open-source Dream tool.

As described in Section 2.3, existing methods for real-time analysis and perfor-

mance estimation have limited use in non-preemptive event-driven asynchronous sys-

tems. Static schedulability methods are not directly applicable to this scheduling

model as demonstrated in Section 6.1, and are often overly conservative, limiting

the accuracy of performance estimation results. Simulations capture dynamic ef-

fects in DRE systems, providing better accuracy, but the coverage of simulations is

hard to measure. Model checking, on the other hand, provides a way for exhaustive

98

Figure 6.3: Mission-critical Avionics DRE System Case Study

analysis, but the abstractions required to prevent the state space explosion problem

often result in decreased accuracy. The proposed DES-based performance estimation

method combines model checking with simulations, therefore we compare the DES-

based performance estimation results to random simulations, as implemented in the

Dream tool, and to TA model checking methods implemented in the Uppaal model

checker [26], and the Verimag IF toolset [15].

We focused on the analysis of two properties in our experiments; (1) we measured

99

Timer Period
RateGen 1Hz 10000
RateGen 5Hz 2000
RateGen 10Hz 1000
RateGen 20Hz 500
RateGen 40Hz 250

Channel WCDelay BCDelay
aths 1 3 3
aths 2 5 5
dvms 1 6 6
dvms 2 5 5
radio1 1 8 8
radio1 2 6 6
radio2 1 5 5
radio2 2 7 7
miu 1 4 4
miu 2 8 8
ems 1 9 9
ems 2 3 3
radar 1 3 3
radar 2 5 5
rwr 1 6 6
rwr 2 4 4
tacts 1 6 6
tacts 2 3 3
wmc 1 5 5
wmc 2 7 7
dmt 1 8 8
dmt 2 11 11
saahs 1 9 9
cnidc 1 6 6

af state logical 1 5 5
airframe 1 20 8
airframe 2 30 10
airframe 3 20 20
airframe 4 30 30
device 1 15 6
display 1 20 8
display 2 10 10

nav steering 1 25 13
navigator navsteering 1 10 10

pilot control 1 10 10
pilot waypoints 1 30 22
tactical logical 1 20 14
tactical logical 2 25 10
tactical mode 1 10 10

tactical physical 1 30 10
tactical steering 1 15 10

Table 6.2: Timer and Channel Parameters for the Real-time CORBA Case Study
Shown in Figure 6.3

the end-to-end computation time of the application, as defined in Definition 6.3, from

the first event generated by the timers, till the time when all tasks have finished

their execution, and (2) we performed schedulability analysis, by formally analyzing

whether any of the tasks may violate their deadlines.

100

Task WCET BCET Subpriority Deadline
aths device 12 12 0 50

aths logical device 12 12 1 50
aths logical display 20 10 2 50

dvms device 20 10 3 100
dvms logical device 20 10 4 50
dvms logical display 20 10 5 50

radio1 device 15 15 6 50
radio1 logical device 15 7 7 50
radio1 logical display 15 15 8 50

radio2 device 15 15 9 100
radio2 logical device 15 8 10 50
radio2 logical display 15 8 11 50

miu device 10 8 12 50
miu logical device 10 10 13 50
miu logical display 10 8 14 50

ems device 5 5 15 50
ems logical device 5 5 16 50
ems logical display 5 5 17 50

radar device 3 3 18 50
radar logical device 3 3 19 50
radar logical display 3 3 20 50

rwr device 3 3 21 50
rwr logical device 3 3 22 50
rwr logical display 3 3 23 50

tacts device 3 3 24 50
tacts logical device 3 3 25 50
tacts logical display 3 3 26 50

wmc device 3 3 27 50
wmc logical device 3 3 28 50
wmc logical display 3 3 29 50

dmt device 10 10 30 50
dmt logical device 10 10 31 50
dmt logical display 10 10 32 50

saahs device 10 10 33 250
cnidc device 10 10 34 250

af state logical device 10 10 35 300
af state logical display 10 10 36 250

af monitor 20 5 49 350
airframe 15 15 42 400
device 5Hz 15 15 37 500

display device 20 8 47 500
nav display 10 10 48 500
nav steering 30 30 46 600

navigator navsteering points 30 8 45 1000
phase manager 30 12 41 350
pilot control 20 10 50 500

pilot waypoints 10 10 43 800
routes 10 10 44 250

tactical logical device 30 8 39 250
tactical mode 30 8 40 350

tactical physical device 5Hz 15 12 38 250
tactical steering 15 15 51 350

Table 6.3: Task Parameters for the Real-time CORBA Case Study Shown in Fig-
ure 6.3

101

6.3.1 Comparison with Random Simulations

The main advantage of the DES-based method is that it gradually increases coverage

over time. Random simulation-based methods do not have this property. Random

simulations assign execution times following a uniform distribution from the [bcetk,

wcetk] intervals of tasks. Let’s denote the two endpoints of a branching interval as

lki
, hki

, where lki
refers to the lower bound on the branching interval, and hki

refers

to the higher bound on the branching interval bcetk ≤ lki
≤ hki

≤ wcetk. Then we

can formalize the probability that the random execution time is within the branching

interval as follows:

P =
hki
− lki

wcetk − bcetk

(6.2)

Note that lim(hki
−lki

)→0 P = 0, therefore the probability that an exact number is

chosen randomly from a continuous-time interval is close to 0, even if we execute infi-

nite number of simulations. Also, the smaller the branching interval, the less chance

that we actually consider it during simulation. Since there is a higher chance that

the execution time is picked from larger branching intervals, repetitive simulations

will pick execution times from branching intervals that have already been chosen for

simulation. To illustrate this problem, consider the EOT as shown in Figure 6.2. The

nodes with the thinner borders correspond to execution traces, that represent race

conditions, and cases when two (or more) events are released with the same times-

tamp. We see that these cases represent the majority of possible unique orderings of

events in this simple example. In larger systems we can expect even worse results, as

the number of branching intervals and race conditions may grow exponentially with

respect to the number of tasks in the system.

As we have seen from Equation 6.2, the chance to find these execution traces using

random simulations is close to 0. However, in the actual system the execution times

102

rarely follow a uniform distribution; it is quite probable that some execution times

are more frequent than others, and that the real system encounters execution traces

that were not considered during the simulation-based evaluation process. Since these

traces are not simulated, designers will also fail to recognize how the system perfor-

mance/schedulability might change due to dynamic effects such as race conditions

or congestions. Therefore, we conclude that random simulations may be useful for

the first steps of performance evaluation, but can achieve only partial coverage of the

possible execution traces over time.

In contrast, the method presented in this chapter gradually increases coverage

over time. Moreover, we consider each branching interval only once, and we check

the worst case times directly, rather than a random number from the branching

interval. Therefore, the proposed DES-based method can discover significantly more

corner cases than random simulation-based performance estimation techniques.

To check whether our observations are relevant in large-scale systems, we ran

experiments to compare random simulations and the DES-based method on the model

shown in Figure 6.3. We ran experiments on an Intel Core i7 920 processor running

at 4GHz using 6GB of three-channel RAM. On this test configuration, the Dream

0.7 Beta release can simulate one execution trace of the DRE case study shown in

Figure 6.3 in ∼20 ms. The fast performance is the result of the symbolic DES-based

representation. We ran both random simulations and the DES-based method on the

model shown in Figure 6.3 for a week. We used the open-source Dream tool for the

random simulations as well, therefore all improvements in the DES-based analysis are

the result of the better state space coverage. We were able to simulate ∼30 million

(3 × 107) non-equivalent execution traces (the execution order of tasks is different)

of the case study using the DES-based method in one week. The implementation

did not take advantage of multi-threaded execution available in modern multi-core

architectures such as the Intel Core i7 processor, and scalability could be significantly

103

improved by a more efficient multi-core implementation. This coverage can only be

achieved using model checking techniques within this short time. Our experiments

show that the DES-based analysis can obtain higher bounds on the worst case end-

to-end performance than random simulations.

The difference comes from the fact that the DES-based method has better state

space coverage, and therefore it is more accurate for performance estimation than

random simulations. Even though the DES-based method cannot always obtain the

highest bounds on the end-to-end performance, the combination of model checking

and directed simulations along the execution tree provided the best coverage that we

could achieve within a week on this case study. This shows that the proposed DES-

based verification method is practically applicable for the performance evaluation of

large-scale systems.

6.3.2 Comparison with Timed Automata Model Checking Methods

We have used Dream to generate TA representation from DRE models as described

in [67]. Uppaal and the IF toolset are two leading model checkers for real-time

verification with several years of development history. Although both Uppaal and

IF build on the TA MoC they are inherently different. Uppaal uses a traditional

TA model [6] extended with integer-valued variables, IF, on the other hand, uses

transition priorities to express time constraints.

We have not conducted extensive comparisons between Dream and TA model

checkers yet to reach meaningful conclusions on how their verification performance

compares in general. In the case studies that we’ve analyzed, TA model checkers

usually perform better than the proposed DES-based method, on smaller models, that

have a high degree of non-determinism. Earlier we have successfully used Uppaal

for the real-time verification of DRE systems consisting of ∼30 tasks/event channels

as described in Chapter 5. TA model checkers employ symbolic state representations

104

that allow for efficient heuristics and compact state space representation. Therefore,

both Uppaal and IF implement memory-bounded model checking.

On large-scale models, such as the case study shown in Figure 6.3, however, both

TA model checkers run out of memory, and are unable to give partial results to design-

ers. Although Dream does not run out of memory on these examples, the verification

time increases exponentially. The impact of this problem could be potentially reduced

by implementing the model checker on a distributed platform. In our experience, TA

model checkers are useful for the performance evaluation of DRE systems that can

be modeled with less than ∼60–100 clocks (occasionally better on mostly determin-

istic models), therefore a compositional approach is required to cope with scalability

issues. Moreover, since performance estimation has to be formalized as a yes/no ques-

tion, designers have to “guess” what a close bound on the end-to-end computation

time could be, and check whether the performance is smaller or not. Our experiences

have shown that TA model checkers are well-suited for the real-time verification of

small/medium size systems, but their practical application for the performance esti-

mation of large-scale DRE systems is limited, and cannot be compared to the proposed

DES-based method – or even random simulations – on large-scale systems, due to the

state space explosion problem as a result of the exhaustive analysis.

6.4 Practical Application to an H.264 Decoder MPSoC Design

6.4.1 H.264/AVC Overview

The H.264/Advanced Video Coding (AVC) is a relatively new video compression stan-

dard that has been developed through the joint work of the International Organiza-

tion for Standardization’s MPEG group and the International Telecommunication

Union’s video coding experts group [52]. One of the main features of this standard

is the significantly improved video quality, better compression efficiency and more

105

Figure 6.4: H.264 Decoder Algorithm

error robustness for various applications as compared to previous coding standards

such as H.263, MPEG-2, and MPEG-3. The H.264 standard is unique in its broad

applicability across a range of bit rates and video resolutions (from low-bitrate mobile

video applications to high-definition TV) and is gaining momentum in its adoption

by industry.

To encode color images, H.264 uses the YCbCr color space like its predecessors,

separating the image into luminance (or “luma”, brightness) and chrominance (or

“chroma”, color) planes. It is, however, fixed at 4:2:0 sub-sampling by default, i.e.,

the chroma channels each have half of the vertical and horizontal resolution of the

luma channel. A video frame is divided into slices, which can be one of three main

types: (1) Intra (I), that describe a full still image and contain a reference only to

themselves, (2) Predicted (P), that use one or more recently decoded slice(s) as a

reference (i.e., prediction) for picture construction, and (3) Bi-directional predicted

(B), that work like P slices with the exception that former and future I or P slices (in

playback order) may be used as reference pictures. Each slice is further divided into

Macroblocks (MBs) which are blocks of 16×16 pixels. The MBs are decoded from left

to right, and then top to bottom. During the decoding process, the MBs are often

further divided into smaller blocks, with the smallest unit being a 4× 4 block.

106

Figure 6.4 shows a block diagram of the H.264 decoder, which we use for de-

coding 176 × 144 square pixel Quarter Common Intermediate Format (QCIF) video

intended for portable multimedia devices. The first stage of the decoding process is

when numeric values are recovered from the binary codes of the compressed video

using the Entropy Decoder. Entropy coding reduces statistical redundancies in a

video stream by using either Context-Adaptive Variable Length Coding (CAVLC) or

Context-Adaptive Binary Arithmetic Coding (CABAC). Next, the Reorder, Dequan-

tization and Inverse transform stages are used to recover residual data. This data is

the difference of the inter- or intra-prediction made by the encoder and the actual

value, for each MB. In the next stage, depending on the header information, either

the motion compensation (MC, or inter-prediction) or Intra (intra-prediction) block

is called. Inter-prediction exploits temporal redundancies by taking advantage of the

fact that the content of a new frame in the video often has high correlation to the data

in the previous frames. For each MB, the encoder looks for a piece (with the same

size) of the previous frame that is similar to it, and then encodes that information by

specifying the relative location of the block. The decoder then uses this information

to reconstruct the block of the frame. Intra-prediction is used for frames that are

not encoded using inter-prediction, such as the first frame of a new scene (which has

low correlation with the previous frame) or frames added to limit error propagation

due to inter-prediction. Intra-prediction exploits spatial redundancies by using part

of a frame to predict the other parts. Finally, a Deblocking filter is used to improve

perceptual quality of the reconstructed video. Since all the processing described so

far process frames one block at a time, the filter helps to blur the edges of the blocks

where imperfections are most visible.

107

Figure 6.5: H.264 Decoder MPSoC Architecture

6.4.2 H.264 Decoder MPSoC Design

This section describes the multimedia H.264 decoder Multi-processor System-on-

Chip (MPSoC) design shown in Figure 6.5. The application utilizes a combination

of SW blocks and custom Application-specific Integrated Circuit (ASIC) HW compo-

nents for computation. Combining SW and HW computations on a common MPSoC

architecture instead of utilizing a fully custom HW implementation has the advantage

of better flexibility for future design changes and better reuse of available design IPs.

Performance critical functionalities are implemented in custom ASIC HW, whereas

more control intensive algorithms are often a better fit for SW implementations.

The H.264 decoder MPSoC design shown in Figure 6.5 was built based on the

concept of HW/SW co-design to take advantage of the strengths of both HW and

SW implementations. The MPSoC is based on a fully connected ARM Advanced Mi-

crocontroller Bus Architecture Advanced High-speed Bus (AMBA AHB) bus matrix

interconnect [8] (also referred to as crossbar switch or multi-layer interconnect). Ad-

vantages of using a bus matrix instead of a shared bus include (1) increased through-

108

put, (2) reduced congestions, (3) simpler arbitration, and (4) simplified performance

analysis due to the simpler arbitration. Since all masters are connected to all slaves

using the AMBA AHB bus matrix interconnect, masters do not need to wait for other

masters when requesting access to the bus, but can transmit at will. A simple point

arbitration policy is used to manage collisions when multiple masters attempt to

access a single slave at the same time, by setting the HREADY signal on the bus, sig-

naling masters that the slave is not ready yet for transmission. We utilize a simple

fixed-priority scheduling algorithm as the point arbitration policy to manage which

(waiting) master is granted access to a slave that becomes ready to serve the new

request. Moreover, the design utilizes a Direct Memory Access (DMA) Controller for

managing the transactions, alleviating the load on the Central Processing Unit (CPU).

We use 5 small memory blocks in this design to enable a pipelined decoder imple-

mentation that improves overall throughput, and ensure as few conflicts as possible

between requests from the various stages. The I, O, and B blocks represent buffers.

We now describe the behavior of the MPSoC design. Details such as processing

frequencies and buffer sizes are described in Section 6.4.3. The encoded multimedia

stream that needs to be decoded is stored in Memory 1 by an external DMA engine.

The CPU signals the DMA Controller to copy the encoded frame from Memory 1 to

the input buffer of the Entropy Decoder. The Entropy Decoder decodes global

parameters such as motion vectors used by the prediction engines, and writes re-

sults to its output buffer. The DMA Controller then fetches the results from the

output buffer of the Entropy Decoder, and writes it to Memory 2. The CPU then

signals the DMA Controller to fetch entropy information from Memory 2 and copy it

to the input buffer of the Discrete Quantization/Inverse Transform (DQ/IT) block.

The CPU fetches the same data from Memory 2, and initiates an inter- or intra-

prediction pre-processing depending on the encoded frame. The CPU and DQ/IT work

in parallel, as they do not depend on each other. The CPU then writes the results of

109

its computation to Memory 3, and triggers DMA Controller to transfer macroblocks

from Memory 3 to the Inter-prediction or Intra-prediction ASIC components

(depending on whether the encoded frame is an P frame or a I frame) to decode

macroblocks. The Inter-prediction or Intra-prediction ASIC blocks may also

execute in parallel with the DQ/IT block. When the DQ/IT block finishes its computa-

tion, the DMA Controller fetches data from its output buffer, and writes results in

Memory 4. Similarly, the DMA controller transfers the computation results from the

output buffers of the Inter-prediction and Intra-prediction blocks to Memory -

4. The DMA Controller then fetches this data and writes it to the input buffer of

the Reconstruction ASIC block, that is used to reconstruct macroblocks from the

computation results of the DQ/IT and Inter-prediction/ Intra-prediction blocks.

The DMA then transfers reconstructed macroblocks to Memory 5. The CPU then fetches

reconstructed macroblocks from Memory 5, runs control-intensive pre-processing as

a first step of the deblocking process, and instructs the DMA Controller to transfer

the results to the input buffer of the Deblocking ASIC block, that smoothens out

the visible borders of macroblocks. Finally, the decoded stream is sent to the Liquid

Crystal Display (LCD) Controller by the DMA Controller, where it is displayed on

the LCD screen. The entire decoding process takes place in a pipelined manner to

improve decoder throughput.

6.4.3 Performance Parameters for the H.264 Decoder MPSoC Design

In order to facilitate accurate performance analysis, we utilized traditional simula-

tion methods to obtain performance parameters for HW/SW components. As the

first step, we have profiled the JM H.264 reference C code (http://iphome.hhi.de/

suehring/tml) to obtain cycle estimates on SW functions, and identify the com-

putationally most intensive blocks. The Inter-prediction, Intra-prediction,

and Deblocking ASIC blocks do not implement their respective processes fully in

110

http://iphome.hhi.de/suehring/tml
http://iphome.hhi.de/suehring/tml

HW, but rather use the CPU for pre-processing. The Entropy Decoder, DQ/IT and

Reconstruction blocks are HW blocks that leave no pre-processing to the CPU.

We have fully implemented the Inter-prediction and Intra-prediction blocks

together with the AMBA AHB bus in Verilog in order to get accurate estimates on

performance parameters, and to allow functional verification using test vectors. The

Entropy Decoder, DQ/IT, Reconstruction, and Deblocking ASIC blocks were par-

tially implemented to allow for RTL cycle estimates.

In H.264, a frame is processed in units of MBs. The size of a macroblock can be

computed as follows: 16× 16 pixels (Luma) + 8× 8 (Cb) +8× 8 (Cr) = 384 Bytes.

The H.264 decoder MPSoC shown in Figure 6.5 works on QCIF resolution frames,

therefore the size of a single frame is 99 × 384 = 38016 Bytes. We utilize a 32bit

wide AMBA AHB bus matrix interconnect for communication, therefore to transfer a

frame through the bus takes 9504 cycles in the ideal case. The worst case depends on

congestions on the bus, and is therefore denoted as ? in both Table 6.4 and Table 6.5.

The total number of bus cycles for processing a frame is 133056 cycles in the ideal

case.

The size of input/output buffers in the DQ/IT, Inter-prediction, Intra-predic-

tion, and Reconstruction ASIC blocks is 2KBytes (for each), that can store 5

Table 6.4: Cycle Estimates for Processing 1 Frame by HW/SW Blocks in Figure 6.5
Block Worst Case Best Case

Entropy Decoder 633600 76032
DQ/IT 65835 65835

Inter-prediction 102960 102960
Intra-prediction 59796 31624
Reconstruction 28611 28611

Deblocking 57024 57024
Inter-prediction (CPU) 4448129 1596938
Intra-prediction (CPU) 3794455 147572

Deblocking (CPU) 4887118 3255122
Bus cycles ? 133056

111

Table 6.5: Execution Time Estimates for Processing 1 Frame by HW/SW Blocks (in
µs)

Block WCET BCET

Entropy Decoder 6336 760
DQ/IT 659 659

Inter-prediction 1030 1030
Intra-prediction 598 316
Reconstruction 287 287

Deblocking 571 571
Inter-prediction (CPU) 11121 3992
Intra-prediction (CPU) 9487 368

Deblocking (CPU) 12218 8137
Bus cycles ? 133

macroblocks at one time (384 × 5 = 1920B). The input/output buffer sizes of the

Entropy Decoder, Deblocking blocks and the input buffer of LCD Controller block

are 40KBytes, therefore they can store a whole frame (frame size is 38016B). The DMA

engine has multiple buffers to manage transactions between masters/slaves on the

bus, and the CPU has 32KB L1 data and instruction caches.

Table 6.4 shows the best and worst case cycle estimates for the H.264 decoder

MPSoC. The execution time of the Entropy Decoder ASIC block depends on the input

data, therefore we see variation in the execution times. The Intra-prediction block

either utilizes 4 × 4 blocks or 16 × 16 blocks, hence the variation in execution time.

And finally, SW blocks executed on the CPU are control-dependent, and exhibit large

variation in execution time. The worst case time for bus cycles depends on dynamic

factors that have to be captured by the performance verification method.

Our performance requirement for the H.264 decoder is to be able to decode H.264

streams real-time in 30 frames/second. Parameters that we had to determine included

the frequencies of ASIC blocks, the frequency of the AMBA AHB bus matrix intercon-

nect (preferably the same as the ASIC blocks for simple synchronization), and the

frequency of the ARM CPU. The unoptimized H.264 reference code comes at a high

price, as we need a 400MHz ARM processor for the decoding, even though most of the

112

heavy lifting is performed in custom ASIC blocks. The frequencies of both the AMBA

AHB bus matrix interconnect and the ASIC blocks are set to 100MHz. An industrial

implementation should optimize the H.264 SW before deploying it in a commercial

application, however this is not the focus of this chapter.

Using these parameters we have calculated the estimated worst and best case

execution times of all blocks. The sum of the worst case execution times for P frames

(inter-prediction) is 32355 microseconds (referred to as µs from now on), and for I

frames (intra-prediction) it is 30289µs, that suggests that 30 frames can be decoded

in 970650µs. This gives us a tight but feasible bound to achieve 30 fps H.264 QCIF

decoding. However, to provide guarantees on the end-to-end performance of the

MPSoC design, we need to consider dynamic effects, such as congestions on the bus,

and varying execution times.

6.4.4 Formal Modeling of the H.264 Decoder MPSoC Design

Figure 6.6 shows the Alderis model for the H.264 decoder. The SW tasks and ASIC

blocks are denoted as T, whereas C represent communication channel First In First

Outs (FIFOs) (set C in Section 4.1.1), which in turn model bus transactions. As seen

from the design, there are 13 channels representing the bus transactions, but the link

between the Mem4 and Reconstruction blocks carries two frames (that get linked in

the Reconstruction block).

All tasks have their own thread of computation, except for the CPU, that has a

single thread to schedule the CPU (Inter-prediction), CPU (Intra-prediction),

and CPU (Deblocking) tasks. Threads are denoted as icons with the two threads,

and are connected to tasks by dashed lines.

Computations are driven by the Timer, that sends out events periodically, repre-

senting the various frames. The MPSoC design shown in Figure 6.6 depicts the case

when a P frame is processed; when I frames are processed, the Intra-prediction

113

Figure 6.6: Formal Modeling of the H.264 Decoder MPSoC Design

and CPU (Intra-prediction) blocks are called instead of the Inter-prediction

and CPU (Inter-prediction) blocks.

Arrows in the block represent dependencies in the set D. Between some block

in the design we have depicted several arrows (i.e. between the Mem2 task and the

DQ/IT task through the FIFO). The larger number of arrows between blocks represent

multiple transactions. In these cases, we are passing 5 macroblocks in each transaction

(that fit in the 2K buffers described in Section 6.4.3). Therefore, 20 transactions are

required to transfer all 99 macroblocks between blocks connected by several arrows.

Execution parameters for tasks are specified in Table 6.5. We use 95µs as param-

eter for bus transaction delays per frame. This parameter approximates the 9504 cy-

114

cle/frame bus transaction delay using 100MHz frequency, as described in Section 6.4.3.

We assume 1 µs access time to read from/write to memories. We specify the period

of the Timer to be 33333 µs, to represent 30 frames/second. We also use 33333 µs as

the deadline for the end-to-end computation of the H.264 decoder. We have used the

model shown in Figure 6.6 with the parameters given in Table 6.5 for the performance

verification of the H.264 decoder MPSoC design, as described in Section 6.4.5.

6.4.5 Performance Verification of the H.264 Decoder MPSoC Design by

DES

We have implemented the performance analysis method in the open-source Dream

tool. The task graph shown in Figure 6.6 is translated to a discrete event sys-

tem. Dream simulates the execution of this system by setting each task to use

its worst case execution time. Each task tk records events that happened within their

[bcetk,wcetk] execution interval. Using this information, directed simulations are run

with all permutations of events. As each execution trace considers only the logical

execution times but not the actual computation, each simulation is in the order of

milliseconds, and depends largely on the number of tasks. The performance of the

overall analysis is mainly influenced by the degree of non-determinism in the analyzed

system.

Using the model described in Section 6.4.4, the open-source Dream tool computed

the worst case end-to-end execution time of a P frame (inter-prediction) to be 32709µs,

and of an I frame (intra-prediction) to be 30643µs. We see that the manual estimates

on the worst case end-to-end computation times in Section 6.4.3 were quite close, but

could not be guaranteed. By combining cycle estimate information obtained by SW

profiling and Register-Transfer Level (RTL) simulations with model checking methods

we were able to obtain tight and reliable bounds on the end-to-end performance of

the multimedia streaming H.264 decoder MPSoC application.

115

6.5 Concluding Remarks

This chapter presented an approach to model DRE systems as Discrete Event (DE) sys-

tems using a continuous-time model, and proposed a method for formal performance

evaluation and real-time verification. The proposed method explicitly captures the

data flow, and models communication and execution intervals using a non-preemptive

scheduling model. The DRE MoC provides a formal executable model allowing to

bridge the gap between simulations and formal verification. Our benchmarks based

on a large-scale avionics case study show that the DES-based performance evalua-

tion method can achieve better coverage than alternative methods, and provides a

way for the systematic measurement of coverage. We also applied the proposed DES-

based performance estimation method to an H.264/AVC MPSoC design. The proposed

approach allows to efficiently explore large design spaces early in the design flow, pro-

vides formal guarantees on real-time constraints, and can produce counter-examples

when real-time properties are violated. The DES-based performance estimation and

verification method has been implemented in the open-source Dream tool available

at http://dre.sourceforge.net.

116

http://dre.sourceforge.net

Chapter 7

Conservative Approximation Method for the
Real-time Verification of Preemptive Systems

Asynchronous event-driven communication is widely used in modern Distributed

Real-time Embedded (DRE) systems. Reducing synchronizations in event-driven sys-

tems can simplify implementation, prevent blocking waits, reduce energy consump-

tion, and provide better throughput and flexibility. Providing formal guarantees on

real-time properties in asynchronous event-driven systems, however, remains a key

challenge.

Stopwatch Automata (SA) [77] were proposed as a Model of Computation (MoC)

that can express preemptable tasks in asynchronous event-driven systems. It was

shown that reachability analysis on the composition of SA as task graphs (integra-

tion graphs) is undecidable [55, 59] if the following conditions are met: (1) tasks use

event-based asynchronous triggering (i.e. a target task starts whenever its source fin-

ishes) on a distributed platform, (2) execution times are specified as continuous-time

intervals, (3) preemptions may occur anytime within the continuous-time execution

interval. In this dissertation, we refer to systems that satisfy these three condi-

tions as Preemptive Event-driven Asynchronous Real-time Systems with Execution

Intervals (PEARSE). PEARSE are a subset of DRE systems, that do not require global

synchronization.

This chapter presents a conservative approximation method for the verification of

PEARSE models, using Timed Automata (TA) [6] model checking methods. The reach-

ability problem is decidable on TA, therefore we provide an implementable method

for the automatic real-time verification of PEARSE models.

The proposed method approximates each stopwatch automaton (S) using an ap-

117

proximate timed automaton (T). We show that the stopwatch automaton accepts all

the time traces that the timed automaton accepts by showing that the language that

T accepts is a subset of the language that S accepts (L(T) ⊆ L(S)). This problem is

known as the language inclusion problem [47]. Since L(T) ⊆ L(S) holds, there are no

timed traces that the timed automaton accepts, but the stopwatch automaton does

not accept, therefore the approximation is conservative. Accordingly, the proposed

analysis provides a sufficient condition to determine the schedulability of preemptive

event-driven asynchronous real-time systems with execution intervals (PEARSE).

The remainder of this chapter is organized as follows. Section 7.1 describes the

problem statement; Section 7.2 presents the proposed method for the verification

of preemptive scheduling, and proves the conservative nature of the approximation;

Section 7.3 demonstrates the approach on a real-time Common Object Request Broker

Architecture (CORBA) application and Section 7.4 presents concluding remarks.

7.1 Problem Formulation

7.1.1 Stopwatch as a Model for a Preemptable Real-time Task

A stopwatch is a clock that can be reseted, stopped, and resumed, providing a simple

model for a preemptable real-time task. The execution time of a task can be repre-

sented as a stopwatch as shown in Figure 7.1. Time is represented as clock ct, and

the stopwatch clock is csw. The valuation of these clocks is vt and vsw as defined in

Section 3.4.

The stopwatch makes a transition to the stop location from its initial (idle) location

when it receives an enablei event that signals that the task is ready for execution. The

? sign after an event denotes an input (receive) event, and the ! sign after an event

denotes an output (send) event as used in [12]. Whenever the task is scheduled for

execution, the stopwatch makes a transition to the run location, and whenever the

118

Figure 7.1: Task Stopwatch Automaton (TSA) – Model of a Preemptable Real-time
Task

task is preempted, the stopwatch moves to the stop location. vsw represents the

valuation of the stopwatch clock. We refer to the stopwatch shown in Figure 7.1 as

Task Stopwatch Automaton (TSA) in this dissertation. When the task finishes its

execution, the TSA moves to the finish location. We say that the TSA executes if

and only if it is in the run location, and it is preempted if and only if it is in the

stop location, and we refer to the time spent in the run location as execution time.

Figure 7.1 can be extended to model periodic tasks by adding a transition to the idle

location from the run location instead of the finish location. In this chapter we use

the simple one-time executing task shown in Figure 7.1 for simplicity.

A task may have a Best Case Execution Time (BCET), that corresponds to the

shortest, and a Worst Case Execution Time (WCET), that corresponds to the longest

time in which the task may finish its execution. Time for execution is counted from

119

the time of the enablei event (vt0), and does not include time spent in the stop location.

The following constraints are implied by the definitions of the stopwatch model, best

case and worst case times:

0 ≤ vsw ≤ vt, 0 ≤ vsw ≤ wcet, 0 ≤ bcet ≤ wcet (7.1)

Deadlines, denoted dl for a given task, are constraints on the maximum time from

the time of the enablei event to the time when the automaton makes a transition to

the finish location.

Definition 7.1 A real-time task is schedulable if it always finishes its execution be-

fore its respective deadline. A task is then schedulable if and only if vt ≤ dl when

vsw =wcet.

The alphabet of the TSA is Σ = {start, stop, enablei, enablej}. The start and stop

events are controlled by a (set of) scheduler(s), the task receives the enablei event

from its source task, and sends out the enablej event when it finishes its execution.

See Section 7.1.2 for the formal definition of composition rules.

A timed word is of the form (σ0, τ0)(σ1, τ1) . . . (σn, τn), where σ0, σ1, . . . , σn ∈ Σ

denote events, and τ1, τ2, . . . , τn ∈ R≥0 denote the timestamps of events. The set of

timed words is the timed language on which the TSA operates. We can express the

syntax of the (untimed) language that the TSA accepts using the following regular

expression:

SL(S) = enablei start (stop start)∗ enablej (7.2)

The timestamps of all events have to be less than dl in a timed word in order for the

TSA to accept the word. We denote the timestamps of events in the [0 . . . dl] interval

as τ1, τ2, . . . , τe, where τ1 denotes the enablei event, and te denotes the last start event.

Note that e is always an even number according to Equation 7.2. The TSA accepts

the timed language L(S) as described in Equation 7.2, and satisfies the following

120

Figure 7.2: Clock Constraints on Stopwatches for Schedulability

constraint:
e
2∑

i=1

τ2i − τ2i−1 ≤ dl− wcet (7.3)

Equation 7.3 states that a task is schedulable if it spends at most dl - wcet time in

the stop location in the TSA within the [0, dl] interval for clock ct, since in this case

it can execute for wcet time before its deadline. Figure 7.2 shows the constraints

implied on the TSA clock for a schedulable task. vsw is in the [0,wcet] domain, vt

is in the [0, dl] domain, and the slope of vsw is at most 1 (v̇sw ∈ {0, 1}). The valid

clock assignments define a parallelogram, and all other assignments result in possible

deadline violations. Note that since this model is an initialized stopwatch automaton,

reachability is decidable [45], therefore we can verify the schedulability of a single

preemptable task, given that we know when start/stop events occur. The darker lines

show a few stopwatch clock valuation traces that model the execution of schedulable

real-time tasks.

7.1.2 Composable Stopwatch Automata as a Model for PEARSE

In Section 7.1.1 we described how TSA can model a preemptable real-time task. In

this section we consider how the composition of stopwatches can represent PEARSE.

In this chapter we represent PEARSE as task graphs GS = (XS, ES), where the set

of vertices represent real-time tasks modeled as stopwatches, and edges represent

121

dependencies between the tasks ES ⊆ XS ×XS. A vertex with no incoming edge(s)

is a source, and a vertex with no outgoing edge(s) is a terminal. This task graph

model is a subclass of integration graphs defined in [55]. In our model, each hybrid

automaton in the integration graph is a TSA.

There are two ways in which TSA models compose in GS; serial and parallel compo-

sition. When parallel composition is used, the composed automata operate indepen-

dently from each other. In graph GS, two TSA compose using parallel composition, if

none of them is reachable from the other on a directed path. We denote parallel com-

position between two vertices xi, xj ∈ XS as xi ⊕ xj. The ⊕ operator is associative,

distributive and commutative.

Assume that there is an edge in graph GS between two vertices (xi, xj) ∈ ES,

so task xj depends on task xi. Then the enablej transition in TSAi, and the enablei

transition in TSAj can only be taken simultaneously. We refer to this case as serial

composition, and define it as follows. Denote the language of xi as L(S)i, and the lan-

guage of xj as L(S)j. Denote the alphabet of xi as Σi = {starti, stopi, enableii , enableji},

and the alphabet of xj as Σj = {startj, stopj, enableij , enablejj}. By definition, the serial

composition of xi and xj means that the timestamp of enableji , and the timestamp of

enableij is the same. We denote serial composition between two vertices xi, xj ∈ VS

as xi ⊗ xj. The ⊗ operator is associative, distributive, but not commutative, since if

xi depends on xj is not the same case as when xj depends on xi.

For the sake of simplicity we do not consider buffers or communication delays

between tasks. Further, without losing generality, we disallow multiple sources to

tasks (∀(xa, xb, xj ∈ VS)((xa, xj) ∈ ES ∧ (xb, xj) ∈ ES) → xa = xb), each task may

depend on at most one task directly. We do allow multiple dependents for tasks, as

these can be modeled as synchronizations between transitions, and do not require

buffers.

We point out that this model can be easily extended to include First In First

122

Figure 7.3: Motivating Example for a Non-WCET Deadline Miss

Out (FIFO) channels modeled as TA, that can express many-to-many connections,

and communication delays as well. Moreover, the model can be extended to include

periodic tasks modeled as TA that broadcast enablei events with some rate. The start

and stop events may be controlled by a (set of) scheduler(s), providing a MoC that

can express PEARSE in a formal setting. Please see [67] for an approach to model

real-time CORBA applications using TA as a MoC for real-time analysis.

7.1.3 Problem Description

Integration graphs may be used to compose stopwatches using events, to express

PEARSE as a network of stopwatch models using preemptive scheduling. Although

the reachability analysis of a single initialized stopwatch automaton is decidable [45],

reachability analysis on integration graphs is undecidable in general, more specifically

if the conditions defining PEARSE are met: (1) tasks use event-based asynchronous

triggering (i.e. a target task starts whenever its source finishes) on a distributed plat-

form, (2) execution times are specified as continuous-time intervals, (3) preemptions

may occur anytime within the continuous-time execution interval [55, 59].

In this chapter we propose a conservative approximation method for the verifica-

tion of preemptive scheduling in PEARSE designs. We approximate SA using TA by

discretizing clocks, to “store” time passed before a preemption. The practical benefit

of this method is that we provide a decidable technique for the real-time verification

of PEARSE.

In event-driven systems it is not enough to consider the worst case times of tasks

in general. Consider the simple example shown in Figure 7.3. Task A is running on

123

machine 1, and tasks B and C are running on machine 2. Task A starts at time 0,

and may finish its execution time anytime within the [2, 6] interval. Task B starts its

execution whenever task A finishes its execution, and executes for 1 time unit. Task

C starts its execution at time 4, and executes for 1 time unit. We assume that task

B has higher priority than task C, and that the deadlines for task B and task C are

1.2 time units. The system is schedulable when task A executes for its BCET time as

shown in the left of Figure 7.3, and it is schedulable when task A executes for its WCET

time as shown in the middle of Figure 7.3. However, if task A finishes its execution

at time 5.5, task C will miss its deadline as it has to wait for task B. Therefore, the

analysis has to capture execution intervals in continuous time, otherwise it may lead

to false positives; unschedulable designs that cannot be detected at design time.

We achieve this goal by mapping preemptive scheduling to non-preemptive schedul-

ing. TA can express non-preemptive scheduling with execution intervals [32, 67], and

reachability analysis is decidable on TA [6].

7.2 Conservative Approximation of Integration Graphs

In this section we describe the conservative approximation method for the reachability

analysis of integration graphs. We implement this approximation in two steps. In the

first step, we map each TSA in graph GS (defined in Section 7.1.2) to a timed automa-

ton. We refer to this timed automaton as Task Timed Automaton (TTA) (described

in detail in Section 7.2.1). In the second step we consider how approximation errors

can be considered in the analysis of task graphs. We denote the language that the

TTA accepts as L(T). Then we show that L(T) ⊆ L(S), that implies the conservative

nature of the approximation.

124

Figure 7.4: Task Timed Automaton (TTA) – Approximating a Preemptable Real-
time Task

7.2.1 Mapping the TSA to TTA

In this section we show how the TSA can be mapped to the TTA. We represent

preemptable tasks as TSA as shown in Figure 7.1. We introduce a generic timed

automaton template for preemptable tasks as shown in Figure 7.4. The locations de-

noted as runx,y in Figure7.4 represent the run location of the TSA, the stopx,y locations

represent locations where the task is preempted (location stop in Figure 7.1). The

x index represents discrete checkpoints denoting time passed, and y represents the

number of preemptions encountered during the run of the TTA. We say that the TTA

executes if and only if it is in a runx,y location, and it is preempted if and only if it

is in a stopx,y location, and we refer to the time spent in runx,y locations as execution

time.

We denote the time unit used for the discretization as tu. We partition the WCET

time of a task to n equal-size intervals, and a smaller interval representing the fraction

of the division of WCET by tu. If tu is a divisor of WCET, then the locations runn,y

representing the fractions are not required, and the value of n and m needs to be

decreased by 1 in all guards in Figure 7.4. We define the constants used in the

template as follows:

125

n = bwcet

tu
c, 1 ≤ m ≤ dl

tu
, k = bbcet

tu
c (7.4)

Key restriction: Since the TTA is an approximation of the TSA, it can only

express bounded numbers of preemptions (per task). Note that this bound does not

restrict periodic execution. If the execution of the task graph is repeatedly triggered

by a periodic (or aperiodic) event, the task can get preempted limited times during

a single execution of the task graph. However, there is no bound on the number of

executions, and thus the overall number of preemptions.

The constant m represents the maximum number of preemptions that the TTA can

capture. This is a weak restriction, as in practical systems tasks are not preempted

infinitely often. In fact, frequent preemptions can significantly degrade the system

performance and therefore should be avoided by design. Moreover, since task graphs

(and dependencies between tasks) are fixed, one can calculate how many times a task

may get preempted during a single execution of the task graph. The value of m is

not affected by how many times the task graph is executed, or whether the design is

periodic. The value of m is proportional to dl
tu

, and the maximum value of m is dl
tu

.

We prove this statement at the end of Section 7.2.2, where we describe the timed

language that the TTA accepts.

Each runx,y location represents tu time spent executing, due to the invariants vta ≤

tu (see Definition 3.1). Since the difference between the WCET and BCET time of a

task may be larger than the time unit tu used for the discretization, we may need

to introduce transitions from several runx,y, x ∈ {0 . . . n− 1}, y ∈ {0 . . .m} locations,

to provide a way for the automaton to jump to the finish location (shown as curvy

arrows in Figure 7.4). We introduce a transition from each runx,y, k ≤ x+ y location

to the finish location, where the constant k from Equation 7.4 is used to calculate the

indeces of runx,y locations from which the finish location is reachable, as the example

shows in Figure 7.4.

126

The model shown in Figure 7.4 does not use any variables other than the valuation

of a single clock (vta), and the valuation of the global time clock (vt). The constants

m,n, k used in the guards can be computed before the verification process, and there-

fore do not require extensions to TA [6]. However, there exist some extensions to TA

that allow the use of integer variables, and the value of k, n,m can be encoded in

integer variables, and therefore pre-computing these constants is not required when

using modern model checkers such as Uppaal [26] or the Verimag IF toolset [15].

The TTA model introduced in Section 4.3.3 is a more compact representation than

the one shown in Figure 7.4 due to the use of integer variables that encode the x

indeces of runx,y locations in the et variable, and the y indeces of runx,y locations

in the pre variable. Thus, we encode the runx,y locations in Figure 7.4 as two integer

variables. The pr variable defines the precision of the approximation, and is denoted

as time unit tu in Figure 7.4.

7.2.2 Analysis of the Timed Automaton Approximation

In Section 7.2.1 we presented the construction rules for the approximation of the TSA

using the TTA. In this section we prove the conservative nature of the approximation

using the language inclusion problem.

The alphabet of the TTA is the alphabet of the TSA, Σ = {start, stop, enablei,

enablej}. However, the TTA can only capture a bounded number of preemptions (per

task). The syntax of the (untimed) TTA language can be described using regular

expressions as follows:

SL(T) = enablei start (stop start)0...m enablej (7.5)

We see that SL(T) ⊆ SL(S). The runx,y locations of the TTA represent “checkpoints”

in time; they store the discrete clock value and the number of preemptions occured

127

during the execution of the task. If a task is in the runa,b location, then it has executed

for at least a · tu time, and has encountered b preemptions.

Definition 7.2 We define the valuation vx = vta +x, where vta is the valuation of cta

as in Figure 7.4, and x is the index of locations runx,y or stopx,y, where the automaton

resides.

Valuation vx has a discrete-time component, that stores the checkpoints that have

already been encountered, and a continuous-time component, that measures the time

between checkpoints. Since timed automaton clocks cannot be resumed like a stop-

watch, the valuation vx is only an approximation of vsw, that models the actual

execution time accurately. Note that vx is not used in the TTA model directly, we

define it for the sole purpose of measuring the imprecision of using vx to approximate

clock value vsw. To establish the relationship between the TSA and the TTA, we com-

pare them on timed words that follow the syntax of the (untimed) regular expression

SL(T). We assume that both the TSA and the TTA receive events in the same order,

and with the same timestamps.

Proposition 7.1 For any timed word r that follows the syntax of the (untimed) reg-

ular expression SL(T), during the co-simulation of word r on both the TSA and the

TTA vsw − m · tu ≤ vx ≤ vsw holds from time 0 to the timestamp of the last event,

where vsw is the valuation of TSA clock csw shown in Figure 7.1, vx is the valuation

defined in Definition 7.2, and m is the number of stop events in the timed word (the

number of preemptions).

Proof: Since both the TSA and the TTA receive events with the same timestamps,

their transitions will happen simultaneously. Whenever the TSA receives a start event,

it makes a transition to the run location, and whenever it receives a stop event it moves

to the stop location. Similarly, whenever the TTA receives a start event, it makes a

128

transition to one of the runx,y locations, and whenever it receives a stop event it moves

to one of the stopx,y locations.

The stopwatch clock valuation vsw increases with a slope of 1 between start and stop

events in the run location, and is constant between stop and start events. The valuation

vx also increases with a slope of 1 between start and stop events in the runx,y locations,

due to the continuous-value timed automaton clock valuation vta shown in Figure 7.4.

Whenever a preemption happens, vta is reset (shown in Figure 7.4). Therefore, with

each preemption, valuation vx loses the value stored in the continuous-time component

(vta becomes 0), whereas clock vsw keeps its value, therefore, vx ≤ vsw.

When the TTA receives a stop event, the clock valuation vta is in the [0, tu] interval,

due to the invariants vta ≤ tu. Since the clock is reset, vx decreases by at most tu

time, while vsw hold its value when a preemption occurs. If there are m preemptions,

the clock value vx may decrease by at most m · tu time compared to clock value vsw,

therefore vsw −m · tu ≤ vx. �

Proposition 7.1 is the key to quantify the imprecision of the timed automaton

approximation. It shows that valuation vx increases slower than – or in the case

when no preemptions occur with the same slope as – clock value vsw due to the fact

that the TTA does not keep track of the time spent in the runx,y location where it has

received the stop event. These results imply that for the same timed word, it takes

at least as much time for the valuation vx to reach a given value, as it does for the

stopwatch clock valuation vsw.

Recall that WCET and BCET denote the longest and shortest possible execution

times of a task, respectively, not including the time spent in the stop location. If we

denote the time that the TSA has spent in the run location as τrun, then vsw = τrun,

based on the fact that vsw is simply a function of vt.

In the TTA model we also use the WCET, BCET parameters to obtain guards on

transitions. Proposition 7.1 shows that valuation vx follows clock value vsw with some

129

imprecision. The time that the TTA spends in runx,y locations equals τrun, because

anytime the TTA receives a start event it makes a transition to a runx,y location, and

anytime it receives a stop event it moves to a stopx,y location, just like the TSA does.

Therefore, according to Proposition 7.1, vsw −m · tu ≤ vx ≤ vsw = τrun.

Definition 7.3 We refer to the valuation of global time clock (vt) when vx =wcet

as actual worst case execution time, and denote it as twcet. The valuation of global

time clock (vt) when vx =bcet is referred to as actual worst case execution time, and

denoted as tbcet

Proposition 7.2 For any timed word r that follows the syntax of the (untimed) reg-

ular expression SL(T), if vx =wcet holds anytime during the run of word r on the

TTA, then wcet≤ twcet.

Proof: The invariants vta ≤ tu in the TTA imply that the TTA spends at most tu

time in each runx,y location. Time spent in stopx,y locations is not part of the execution

time and therefore does not contribute to twcet (only to the deadline). Moreover, we

reset the continuous-time component (clock valuation vta in Figure 7.4) whenever we

leave a stopx,y location, therefore the value of clock valuation vx when it leaves the stop

location is less than or equal to its value when it entered the location. Neither twcet,

nor vx increases by passing through stopx,y locations, and therefore we can abstract

these location out here. If the TTA receives no stop events, it spends tu time in n

locations, then wcet−n ·tu time in the last location, therefore if no preemptions occur,

twcet is wcet in the TTA.

Create a directed graph GM = (VM , EM) such, that for each runx,y location add

a vertex vx,y in graph GM . For all vertices vx,y, x ∈ 0 . . . n − 1, y ∈ 0 . . .m − 1 add

a directed edge from vx,y to vx+1,y, and a directed edge from vx,y to vx,y+1. Add a

terminal vertex z to graph GM , and add edges from each vn,y to z. We only add

edges from vn,y locations because we are interested in the worst case execution time

130

of the task, and therefore we require the automaton to go through (at least) n runx,y

locations. The edges in GM specify the order in which runx,y locations can follow

each other in the TTA, the source represents the initial idle location, and the terminal

represents the finish location. The graph GM is an abstract model of the TTA shown

in Figure 7.4. The shortest path in GM from v0,0 to t is the s, v0,0, v1,0, . . . vn,0, t path,

that corresponds to the case when the TTA receives no stop events. Anytime the TTA

receives a stop event, it needs to go through additional runx,y locations, and therefore

twcet increases. �

Proposition 7.3 For any timed word r that follows the syntax of the (untimed) reg-

ular expression SL(T), if vx =bcet holds anytime during the run of word r on the

TTA, then tbcet ≤bcet.

Proof: We build on the GM graph introduced in Proposition 7.2. Since we are

interested in the best case, we add an edge from each vx,y vertex to t, where k ≤ x+y,

not just from vn,y vertices. Since we introduced edges from each runx,y, k ≤ x + y

vertex, the shortest path from s to t is k+2 (k·vx,y vertices, plus start (s) and terminal

(t)locations), regardless of the value of y, that represents the number of preemptions.

Each vertex represents a runx,y location, where we spend at most tu time, due to the

invariant vta ≤ tu, and therefore vt is at most k · tu when the TTA reaches a location

that has a transition to the finish location. The guard on all transitions from runx,y

locations to the finish location is bcet−k · tu, and bcet−k · tu + k · tu =bcet, therefore

tbcet is bcet or less in the TTA. �

Now that we established the relation between the TSA and the TTA, we focus on

the language that the TTA accepts. The timestamps of all events have to be less than

dl in a timed word in order for the TSA to accept the word. We discard the enablej

event, since it might not correspond to the worst case. Similarly to the notations

used with the TSA, we denote the timestamps of events in the [0 . . . dl] interval as

t1, t2, . . . , te, where t1 denotes the enablei event, and te denotes the last start event.

131

The number of preemptions m = e
2

in Proposition 7.1, since every second event

is a stop event (and e is even). Therefore,
∑ e

2
i=1 tu = m · tu, corresponding to the

maximum difference between clocks csw and vx on any timed word over Σ, as shown

in Proposition 7.1. Accordingly, we conclude, that the TTA accepts the timed language

that has a syntax as described in Equation 7.5, and satisfies the following constraint:

e
2∑

i=1

τ2i − τ2i−1 + tu ≤ dl− wcet (7.6)

Equation 7.6 states that a task is schedulable if it spends at most dl−wcet−m · tu

time in stopx,y locations in the TTA within the [0, dl] interval, since in this case it

can execute for WCET time before its deadline. We need to subtract m · tu from the

available time to compensate for the imprecision of the TA approximation described

in Proposition 7.1.

We now show that the maximum value of m is dl
tu

in Equation 7.4. From Equa-

tion 7.6 we see that the maximum value for m defined in Equation 7.4 is dl
tu

, since

the number of preemptions m = e
2
, therefore in this case

∑ dl
tu
i=1 tu = dl ≥ dl−wcet,

therefore the constraint specified in Equation 7.6 will never be satisfied when the

number of preemptions encountered is more than dl
tu

.

7.2.3 Language Inclusion Problem for a Single TTA/TSA Pair

The language inclusion problem for SA can be described as follows; given two SA

T and S, are all timed traces accepted by T also accepted by S? For the proof we

proceed with the common method of complementation and emptiness checking of the

intersection [47]: L(T) ⊆ L(S) if and only if L(T) ∩ L(S) = ∅.

Theorem 7.1 The TSA accepts the timed language over Σ that the TTA accepts:

L(T) ⊆ L(S).

132

Proof: SL(T) ⊆ SL(S), therefore it is sufficient to show that L(T) ⊆ L(S) holds over

timed words that can be expressed using the (untimed) syntax SL(T). Let tstop denote

the expression
∑ e

2
i=1 τ2i−τ2i−1, the time that the TSA spends in the stop location. The

timestamps of events are the same in the TTA and TSA traces, as we compare the timed

languages L(T) and L(S) word by word. Then, the time constraints on the timed

language L(T)∩L(S) can be expressed as tstop +
∑ e

2
i=1 tu ≤ dl−wcet∩tstop > dl−wcet.

Since tu ∈ R≥0, therefore 0 ≤
∑ e

2
i=1 tu. Since tstop cannot be both smaller than or

equal to dl - wcet and less than dl - wcet, therefore the intersection of L(S) and L(T)

is the empty set, that implies that the TSA accepts the timed language over Σ that

the TTA accepts, and L(T) ⊆ L(S) holds. �

7.2.4 The Effects of Composing TTA on the Approximation

We now show that since twcet of the TTA is larger than twcet of its corresponding

TSA, and tbcet of the TTA is smaller than tbcet of its corresponding TSA, therefore the

composition of TTA models is a conservative approximation of the composition of

TSA.

Theorem 7.1 shows that the TSA accepts the language that the TTA accepts

(L(T) ⊆ L(S)). As described in Section 7.1, the composition of TSA as a task

graph turns reachability analysis undecidable [55], which motivated our work to ap-

proximate TSA task graphs using TTA task graphs. In this Section we show that the

composition of TTA as a task graph (denoted as GS in Section 7.1.2) does not in-

validate the results of Theorem 7.1. For the conservative approximation of TSA task

graphs, we replace each TSA in the task graph with a TTA. We denote this graph as

GT = (XT , ET), where each vertex in set XT is a TTA. As each timed automaton

is also a stopwatch automaton, TTA compose using events the same way as TSA do.

Graphs GS and GT are a representation of applying the ⊕ parallel composition op-

erator, and the ⊗ serial composition operator to TSA and TTA models, respectively.

133

Therefore, we need to consider how these operators may influence the timestamps of

events.

When parallel composition is used between two automata (xk ⊕ xl), xk ∈ XT , xl ∈

XT , then the two automata do not depend on each other and can be analyzed in-

dependently. Therefore, the parallel composition of TSA and TTA models does not

influence the timestamps of events.

We now consider the case when serial composition is used between two automata

(xk ⊗ xl), xk ∈ XT , xl ∈ XT . Denote the language of xk as L(T)k, and the language

of xl as L(T)l. Denote the alphabet of xk as Σk = {startk, stopk, enablekk
, enablelk},

and the alphabet of xl as Σl = {startl, stopl, enablekl
, enablell}. Since the timestamp

of enablelk , and the timestamp of enablekl
is the same by definition, therefore the

timestamps of events in Σl may be influenced by the timestamp of enablelk .

The enablelk event signals the end of the execution of TTAk, and is raised when vx is

within the [bcetk, wcetk] interval. Therefore, the timestamp of enablelk is influenced

by the imprecision between vx and vsw described in Proposition 7.1. Proposition 7.2

shows, that if vxk
= wcetk holds, then wcetk ≤ twcetk . Also, Proposition 7.3 shows,

that if vxk
= bcetk holds, then tbcetk ≤ bcetk. Therefore, if vxk

= wcetk holds for

a TTA, then the timestamp of enablelk is in the [tbcetk , twcetk] real-valued interval, and

[bcetk, wcetk] ⊆ [tbcetk , twcetk]. This implies that TTAk can generate all the timestamps

for event enablelk , that its corresponding TSAk model can generate, if vxk
= wcetk can

be satisfied. If it cannot, then the TTA will report the task as unschedulable (that

may or may not be true). Therefore, the proposed approximation method provides a

sufficient, but not necessary condition, in general, to determine the schedulability of

TSA models composed using the ⊕ and ⊗ operators.

134

Figure 7.5: Real-time CORBA Avionics Application

7.3 Practical Application

We applied the proposed conservative approximation method to analyze a PEARSE

design shown in Figure 7.5, loosely based on the real-time CORBA avionics applica-

tion described in Section 5.4. In this section, we map the application to a preemptive

execution platform for the real-time verification, with slightly different execution pa-

rameters.

Tasks represent software components, and are denoted as T, FIFO event chan-

nels are denoted C. Timers send out events periodically, driving the computation

in the design. Arrows represent dependencies between tasks. Tasks are mapped

to threads as defined by the dashed lines. Within each thread, fixed-priority non-

135

Timer Period

Timer 1Hz 1000
Timer 2Hz 1 500
Timer 2Hz 2 500
Timer 4Hz 1 250
Timer 4Hz 2 250

Task WCET BCET Deadline

gps 21 18 100
airframe 53 50 100

pilot wayp... 37 35 300
routes 18 15 250

display device 26 26 250
af monitor 33 32 150
nav display 14 12 150
nav steering 69 65 150
navigator... 42 42 100
pilot control 43 37 80
tactical st... 58 52 100

Table 7.1: Parameters for the Real-time CORBA Case Study Shown in Figure 7.5

preemptive scheduling is used, and fixed-priority preemptive scheduling is used be-

tween threads. Both CPU 2 and CPU 3 use preemptive scheduling. FIFOs are scheduled

non-concurrently (i.e. they are always ready to execute). Communication between

software tasks is fully asynchronous and event-driven. Overall, there are 11 tasks in

the design and 11 FIFO buffers, that execute on 5 threads on 3 CPUs. Execution

parameters for tasks are shown in Table 7.1.

Each task is represented as a TTA using the Uppaal syntax defined in Section 4.3.3

and FIFO channels are modeled as the Channel and Buffer constructs introduced in

Section 4.3.4 and Section 4.3.5. Figure 7.6 and Figure 7.7 show the TA representation

of the real-time CORBA avionics application shown in Figure 7.5. As discussed in

Section 4.3.2, error locations are defined as committed for each TTA to ensure that

the model deadlocks whenever a deadline is exceeded, or event is lost. Thus, when

no deadlocks occur then all deadlines are met.

136

Figure 7.6: Uppaal Timed Automata Models for the Avionics Application Shown in
Figure 7.5 (Part 1/2)

137

Figure 7.7: Uppaal Timed Automata Models for the Avionics Application Shown in
Figure 7.5 (Part 2/2)

138

Figure 7.8: Model Checking Time

We have checked the schedulability of the TA model using the the Uppaal model

checker [26] by issuing the A[] not deadlock macro (Experiment 1). We then

ran experiments where in each step we halved both the BCET and WCET of a single

task (first gps, then airframe etc.) We used the highest possible precision for

preemptive tasks, the value of the clock is saved at every integer value during the

execution of a task. Experiments were executed on an Intel Core i7 i920 processor

running at 4GHz, using 6GB three-channel RAM. Model checking time for the 12

experiments is shown in Figure 7.8, and the memory used is shown in Figure 7.9.

Both the verification time and memory consumption vary as a function of non-

determinism, which is influenced by many factors, including the actual execution

parameters, the size of execution intervals, the number of concurrently executing

tasks, as well as the number of tasks. That said, complexity cannot simply be judged

as a factor of size.

In Experiment 3, where the WCET and BCET parameters for the airframe task

are halved (to 27 and 25, respectively), the change results in a deadline miss in

the nav display task. This means that we did not find a sufficient condition for

schedulability, and the design may or may not be schedulable. All other experiments

proved the design schedulable with the given parameters. Decreasing the execution

parameters for the tactical steering task greatly increased verification time and

memory consumption. The cause of the complexity increase is unknown to us, but

139

Figure 7.9: Model Checking Memory Consumption

we suspect that the changes have increased the non-determinism in the model (i.e.

by introducing race conditions, or non-deterministic execution order).

Several improvements may increase scalability in real-life problems. First of all, the

proposed method allows for hierarchical model checking, since preemptive components

can be encapsulated into non-preemptive “wrappers”, acting as a black box. Since

intervals for communication are captured, there is no need to model all components

at once. We plan to investigate this direction in the future. Second, Uppaal does

not take advantage of multi-core processors or distributed clusters. Model-checking

algorithms that are CPU-bound rather than memory-bound – such as the algorithm

described in [70] – have the potential to leverage multi-core hardware and may provide

better performance in the future. There is room for optimization in current model

checkers. Given the resources, the real-time verification of large-scale designs is within

reach.

7.4 Concluding remarks

This chapter presented a conservative approximation method for the verification of

Preemptive Event-driven Asynchronous Real-time Systems with Execution Intervals

(PEARSE). The proposed method is based on TA model checking methods, and in-

herently captures asynchrony and dependencies between tasks and provides a way for

140

the formal analysis of practical embedded systems. We have shown that the approx-

imation provides a sufficient, but not required condition to determine the schedula-

bility of distributed asynchronous event-driven systems using preemptive scheduling.

The practical application of the method was shown on a real-time CORBA avion-

ics application. This chapter presents a conservative approximation method for the

verification of Preemptive Event-driven Asynchronous Real-time Systems with Ex-

ecution Intervals (PEARSE). The proposed method is based on TA model checking

methods, and inherently captures asynchrony and dependencies between tasks and

provides a way for the formal analysis of practical embedded systems. We have shown

that the approximation provides a sufficient, but not required condition to determine

the schedulability of distributed asynchronous event-driven systems using preemp-

tive scheduling. The practical application of the method was shown on a real-time

CORBA avionics application. The conservative approximation method for PEARSE

has been implemented in the open-source Distributed Real-time Embedded Analysis

Method (Dream) tool available at http://dre.sourceforge.net.

141

http://dre.sourceforge.net

Chapter 8

Combining Transaction-level Simulations and Model
Checking for MPSoC Verification and Performance
Evaluation

Modern Multi-processor Systems-on-Chip (MPSoCs) are deeply embedded electronic

systems operating in resource-constrained environments, that consist of several het-

erogeneous components such as programmable processors, custom logic blocks, mem-

ories, and peripherals, all of which are connected together via an interconnection

network. The complexity and functionality of these systems often rivals that of high-

performance processors from a decade ago, at a fraction of price and energy costs.

MPSoC designs must satisfy increasingly complex performance constraints for emerg-

ing applications, that is becoming more and more challenging for system designers

because of the large number of components on a chip that have multifaceted depen-

dencies and interactions with each other.

While MPSoC designs themselves can be viewed as Distributed Real-time Embedded

(DRE) systems, the communication subsystem in MPSoC designs has a major impact

on both design and analysis. Unlike software-intensive DRE systems that communi-

cate over packet-switched networks, MPSoC designs often utilize complex bus matrix

architectures, where access to the bus is managed by an arbiter (or several arbiters).

In particular, deadlock-freedom and livelock-freedom is not guaranteed by bus proto-

cols, but is a key requirement for designers.

Bus interconnect standards such as the ARM Advanced Microcontroller Bus Ar-

chitecture Advanced High-speed Bus (AMBA AHB) [8] and CoreConnect [48] are com-

monly used to integrate heterogeneous components into MPSoC designs. Bus protocols

provide reliable communication in MPSoC systems by specifying standard methods for

142

interaction between components connected to the bus. Key issues that bus protocols

must address include synchronization, dealing with concurrent requests, transmission

errors, preventing deadlocks, and Quality of Service (QoS) support for MPSoC designs.

Despite the fact that bus protocols have a critical role in providing a reliable

platform in MPSoC systems, their specifications are typically written as a combination

of natural languages and timing diagrams. Although this approach is effective in

explaining basic use cases to developers, it cannot cover every possible use case, and

introduces ambiguity in the specification. This ambiguity is especially troublesome

when heterogeneous Intellectual Property (IP) blocks have to be integrated on the

bus, as different vendors might implement the ambiguous parts of the specification

differently. Thus the interoperability of such components can be at risk.

Although most vendors provide test vectors to validate and certify whether com-

ponents work with a bus protocol, there is no well-defined methodology to check

whether the system as a whole satisfies high-level design constraints. Simulation-

based approaches have been found useful in designing large-scale embedded systems,

however, they can only show the presence of errors, not their absence. Moreover, sim-

ulations are time-consuming limiting designers to a few test cases. The contributions

of this chapter focus on the following areas:

• We define a formal model for the AMBA AHB protocol based on the Finite State

Machine (FSM) Model of Computation (MoC). We develop a cycle-accurate

model for MPSoC designs based on AMBA AHB. This work is described in Sec-

tion 8.1.

• We describe a set of digital camera MPSoC design alternatives based on the

JPEG2000 [53] still image compression standard in Section 8.2.

• We describe our approach for the functional verification of the digital camera

design alternatives in Section 8.3. We describe an ambiguity in the AMBA AHB

143

protocol specification, and our approach to resolve the ambiguity.

• We utilize the formal models developed in Section 8.1 to propose a method for

performance estimation by combining transaction-level simulations and model

checking in Section 8.4.

8.1 Formal Modeling of the AMBA AHB protocol

Over the past decade and a half, several bus-based on-chip communication architec-

ture standards have been proposed to handle the communication needs of emerging

MPSoC designs. Of these, the ARM Microcontroller Bus Architecture (AMBA) version

2.0 [8] is one of the most widely used on-chip communication standards to intercon-

nect components in MPSoC designs. The goal of this standard is to provide a flexible,

high-performance bus architecture specification that is technology-independent, takes

up minimal silicon area and encourages IP reuse across designs. The AMBA 2.0 bus

architecture standard defines three buses: ARM Advanced Microcontroller Bus Ar-

chitecture Advanced High-speed Bus (AMBA AHB), ARM Advanced Microcontroller

Bus Architecture Advanced Peripheral Bus (AMBA APB) and ARM Advanced Mi-

crocontroller Bus Architecture Advanced System Bus (AMBA ASB). The AMBA AHB

bus is used for high bandwidth and low latency communication, primarily between

Central Processing Unit (CPU) cores, high performance peripherals, Direct Mem-

ory Access (DMA) controllers, on-chip memories and interfaces such as bridges to

the slower AMBA APB bus. AMBA APB is used to connect slower peripherals such

as timers, Universal Asynchronous Receiver/Transmitters (UARTs) etc. and uses a

bridge to interface with AMBA AHB. It is a simple bus that does not support the

advanced features of the AMBA AHB bus. The AMBA ASB bus is an earlier version of

the high-performance bus that has been superseded by AMBA AHB in current designs.

Since we use the AMBA AHB bus standard in this chapter, we present a brief overview

144

of is features next.

The ARM Advanced Microcontroller Bus Architecture Advanced High-speed Bus

(AMBA AHB) is a high-speed, high-bandwidth bus that supports multiple masters.

AMBA AHB supports pipelined data transfers for high speed memory and periph-

eral access without wasting precious bus cycles. Burst transfers allow optimal usage

of memory interfaces by giving advance information of the nature of the transfers.

AMBA AHB also allows split transactions which maximize the use of the system bus

bandwidth by enabling high latency slaves to release the system bus during the dead

time while the slave is completing its transaction. AMBA AHB architectures can have

various topologies such as single shared bus, multi-layer (or hierarchical) shared bus

and bus matrix. A designer can select any of these topologies based on MPSoC com-

munication requirements and customize it to optimize overall bandwidth and improve

performance. An AMBA AHB bus consists of an address bus (typically 32 bits wide)

and separate (or shared) read and write data buses that have a minimum recom-

mended width of 32 bits, but can have any values ranging through 8, 16, 32, 64, 128,

256, 512 or 1024 bits, depending on application bandwidth requirements, component

interface pin constraints and the bit width of words accessed from memory modules

(i.e. embedded DRAM).

When a master needs to send or receive data in AMBA AHB, it requests an arbiter

for access to the bus by raising the HBUSREQx signal. The arbiter, in turn, responds

to the master via the HGRANTx signal. Depending on which master gains access to

the bus, the arbiter drives the HMASTERx signals to indicate which master has access

to the bus (this information is used by certain slaves). When a slave is ready to be

accessed by a master, it drives the HREADYx signal high. Only when a master has

received a bus grant from the arbiter via HGRANTx and detects a high HREADY signal

from the destination slave, will it initiate the transaction. The transaction consists

of the master driving the HTRANSx signal, which describes the type of transaction

145

(sequential or non-sequential), the HADDRx signals which are used to specify the slave

addresses, and HWDATAx if there is write data to be sent to the slave. Any data to

be read from the slave appears on the HRDATAx signal lines. The master also drives

control information about the data transaction on other signal lines; HSIZEx (size

of the data item being sent), HBURSTx (number of data items being transferred in a

burst transaction), HWRITE (whether the transfer is a read or a write) and HPROTx

(contains protection information for slaves which might require it).

8.1.1 Modeling AMBA AHB by Finite State Machines

In this section we formalize our model for the AMBA AHB protocol. The notion of

time used in the protocol specification is discrete (bus cycle), therefore the protocol

can be represented as a Discrete Event (DE) system. There are several models of

computation that can express DE systems, well-known examples include FSMs, Petri-

nets and data-flow networks. Timed Automata (TA) and Hybrid Automata (HA) are

extensions to FSMs in order to express the continuous evaluation of system variables,

and are therefore too heavyweight to represent cycle-based bus protocols. The DE

model is simpler than TA or HA, and offers a more scalable approach for verification

by utilizing Binary Decision Diagrams (BDDs) [18]. We propose the use of the FSM

MoC for the representation of the AMBA AHB bus protocol as a DE system. We chose

FSMs mainly because they are supported by several model checkers [1] [56] [46].

We have created a cycle-accurate model of the AMBA AHB bus in order to model

bus transactions accurately. To ensure that a single split transfer or RETRY response

does not deadlock the bus as described in [88], we assume that the arbiter only grants

access to a new master when the HRESP signal is OK and the HTRANS signal is IDLE.

This introduces an extra cycle arbitration delay in the model. We model arbitration

delays, pipelining, and busy slaves (HREADY is 0) in the bus as well. We have also

modeled the two-cycle response times for RETRY and SPLIT responses according to

146

the AMBA AHB specification. We implemented a round-robin arbiter, mainly to avoid

starvations that might arise when a fixed-priority arbiter is used. We consider RETRY

responses from the slave (HRESP = RETRY), as well as split transfers.

We do not model HLOCK signals, that are set by a master than needs uninterrupted

access to the bus during a transaction. When HLOCK is set by the master, the arbiter

simply holds its state as it is forced to grant access to the locking master as long

as the signal remain active. It is easy to see that a master that asserts HLOCK and

does not deassert it essentially causes a deadlock. Unless the master is faulty, this

condition should not occur in practice. The HLOCK signal set by a master overrides the

arbiter, and therefore it is the responsibility of the master to ensure that it eventually

deasserts this signal. As long as the master deasserts HLOCK, no deadlocks occur, as

the arbiter continues where it left off before the HLOCK signal was set.

8.1.2 Modeling AMBA AHB Masters

We modeled a generic AMBA AHB master as a FSM with six states (idle, busreq,

haddr, read, write, error) as shown in Figure 8.1. This FSM provides a “black

box” model for AMBA AHB masters as seen from the bus. The master requests access

to the bus, then reads, and finally writes to the bus. The error state is used to

check for inconsistent replies from the slave/arbiter, and turns protocol checking into

a reachability problem; in correct protocols, the error state should not be reach-

able. By specifying how much time the FSM spends in each state we can capture

performance analysis in a formal setting.

Algorithm 8.1 shows the NuSMV syntax for the FSM shown in Figure 8.1. Tran-

sitions are specified within the case ...esac; block. Transitions are ordered deter-

ministically; the next value of state will be specified by the first guard that evaluates

to true. The figure is only partial; the HADDR, HTRANS, HRDATA, HWDATA, and BUSREQ

signals depend on the state of the master. The MASTER STATE variable is used for the

147

Figure 8.1: Finite State Machine Model of an AMBA AHB Master

performance evaluation described in Section 8.4 to provide a fast and simple method

to track the master’s current state from the arbiter.

The Best Case Execution Time (BCET) and Worst Case Execution Time (WCET)

parameters are given as inputs to the AMBA AHB master. The READSIZE and WRITE-

SIZE parameters specify the size of the data read from and written to the bus. The

BCET, WCET, READSIZE, and WRITESIZE parameters are provided by the simulations.

148

Algorithm 8.1 Partial NuSMV Finite State Machine Model for an AMBA AHB
Master
MODULE master read write (BUSREQ, HGRANT, MASTER STATE, MASK MASTER, BCET,
WCET, READSIZE, WRITESIZE, START, FINISH)

VAR
state : idle, busreq, haddr, read, write, busy, error;
prev state : idle, busreq, haddr, read, write, busy, error;
io : read, write;
ET : 0..MAXET;
SIZE : 1..MAXSIZE;
HADDR : boolean;
HTRANS : IDLE, NONSEQ, SEQ, BUSY;
HWDATA : boolean;

ASSIGN
init (state) := idle;
init (io) := read;
init (SIZE) := 1;
init (prev state) := idle;
next (prev state) := idle;
next (state) :=
case
HRESP = ERROR : error;
MASK MASTER & HGRANT : error;
HRESP = SPLIT & HGRANT : state;
!HREADY : state;
MASK MASTER : state;
HRESP = RETRY & HGRANT : prev state;
state = idle & START & READSIZE = 0 : busy;
state = idle & START : busreq;
state = idle : idle;
state = busreq & HGRANT : haddr;
state = busreq & !HGRANT : state;
state = haddr & HGRANT : read;
state = read & HGRANT : write;
state = write & HGRANT & SIZE = READSIZE & io = read : busy;
state = write & HGRANT & SIZE = WRITESIZE & io = write : idle;
state = write & HGRANT & SIZE < READSIZE & io = read : haddr;
state = write & HGRANT & SIZE < WRITESIZE & io = write : haddr;
state = busy & ET < BCET : busy;
state = busy & ET = WCET : busreq;
state = busy & BCET <= ET : busy, busreq;
1: error;

esac;
...

8.1.3 Modeling AMBA AHB Slaves

We modeled a generic AMBA AHB slave using four states (idle, write, read,

error) as shown in Figure 8.2. The transitions of the slave have to be synchro-

nized with the master – i.e. the slave has to be in the read state when the master

is in the write state – otherwise the slave (and the master) will enter the error

state. Thus by verifying that the error state is unreachable from both the master

and the slave we can prove that the master and slave communicate with each other

as expected.

149

Figure 8.2: Finite State Machine Model of an AMBA AHB Slave

Algorithm 8.2 shows the NuSMV syntax for the FSM shown in Figure 8.2. Tran-

sitions are specified within the case block. Algorithm 8.2 is only partial; the HREADY

and HRESP signals are assigned values non-deterministically for the functional veri-

fication. The slave records split transactions by storing the master’s address in the

MASK MASTER1, MASK MASTER2, and MASK MASTER3 flags. These flags are managed by

the slave (the arbiter also maintains its own flags for which master is masked) and

are cleared when the slave issues an HSPLITx signal. The extended variable is used

to extend the duration of RETRY and SPLIT responses for two clock cycles according

to the AMBA AHB specification.

150

Algorithm 8.2 Partial NuSMV Finite State Machine Model for an AMBA AHB
Slave
MODULE slave (HADDR, HTRANS, HWDATA, HRDATA, HREADY, HRESP, HMASTER,
HSPLIT, MASK MASTER1, MASK MASTER2, MASK MASTER3, SLAVE STATE)

VAR
state : {idle, write, read, error};
prev state : {idle, write, read, error};
extended : boolean;

ASSIGN
init (state) := idle;
init (prev state) := state;
init (extended) := 0;
next (prev state) := state;
next (state) :=
case
SLAVE STATE != x : SLAVE STATE;
HRESP = SPLIT : idle;
!HREADY : state;
HTRANS = BUSY : state;
HRESP = RETRY : prev state;
state = idle & HTRANS = NONSEQ & HADDR : write;
state = idle : state;
state = write & HTRANS = NONSEQ : read;
state = read & HTRANS = NONSEQ & HWDATA : idle;
1 : error;

esac;...

8.1.4 Modeling an AMBA AHB Round-robin Arbiter

We modeled a round-robin arbiter to evaluate the case studies described in Section 8.3

and Section 8.4. The arbiter is specific to the AMBA AHB protocol, and captures most

bus signals used by the master and the slave. The design is too complex to show in

a figure, therefore we use the NuSMV syntax to describe the arbiter’s functionality.

We describe the partial implementation of arbiter for two masters and one slave for

simplicity, for more details and case studies please visit http://alderis.uci.edu/

amba2. We also define a dummy default master for the bus that expresses the case

when none of the two masters have access to the bus. The arbiter keeps track of both

masters current state, and their previous state. An alternative approach would be to

check the masters’ state directly, however that would require a dedicated wire from

the masters to the arbiter, which is unnecessary hardware overhead. Therefore, the

arbiter keeps track of masters’ state using the following simple rules. Whenever the

slave sets the RETRY signal, repeat the previous transaction:

151

http://alderis.uci.edu/amba2
http://alderis.uci.edu/amba2

next (master1 state) :=
case

-- Roll back for retrys
HRESP = RETRY & !lasterror : master1 prev state;

Follow the transitions in the FSM shown in Figure 8.1:

master1 state = idle & HREADY & HRESP = OK & HGRANT1 : grant;
master1 state = grant & HTRANS != IDLE & HREADY & HRESP = OK & HGRANT1
: transmit;
master1 state = transmit & HTRANS = IDLE & HREADY & HRESP = OK &
HGRANT1 : idle;

Mask masters (prevent them from acquiring access to the bus) whenever the slave set

the SPLIT response:

HREADY & HRESP = SPLIT & HGRANT1 & !lasterror : mask;
master1 state = mask & HSPLIT = master1 : idle;

The lasterror variable is introduced to hold the master’s state if the previous re-

sponse was either RETRY or SPLIT, according to the AMBA AHB specification. The

default behavior is to hold the master’s state.

lasterror : master1 state;
master1 state;

esac;

The arbitration policy determines which master will be given preference in the

next bus cycle when asking access to the bus by setting its BUSREQ signal. We express

the arbitration policy with the help of the preferred variable. Given that we imple-

mented a round-robin arbiter, the value of the preferred variable alternates between

master1 and master2. The first set of rules expresses that if a master requests access

to the bus, it is eventually granted access to the bus. When both masters request

access, one of them will be granted access non-deterministically:

152

next (preferred) :=

-- Master starts the transmission
!HGRANT1 & !HGRANT2 & master1 state != mask & master2 state != mask &
HREADY & HRESP = OK & BUSREQ1 & BUSREQ2 : master1, master2;
!HGRANT1 & !HGRANT2 & master1 state != mask & HREADY & HRESP = OK &
BUSREQ1 & !BUSREQ2 : master1;
!HGRANT1 & !HGRANT2 & master2 state != mask & HREADY & HRESP = OK &
!BUSREQ1 & BUSREQ2 : master2;

When one master (i.e. master1) is split and the other one (master2) is transmitting

to the slave, the slave may decide to split (mask) the current transmitting mas-

ter (master2), and unsplit the masked master (master1). If the masked master

(master1) requires access to the bus, grant access immediately, otherwise grant ac-

cess to the default (dummy) master.

-- Cross-splitting
HGRANT1 & master1 state = transmit & master2 state = mask & HRESP =
SPLIT & !BUSREQ2 & HSPLIT = master2 : default;
HGRANT2 & master2 state = transmit & master1 state = mask & HRESP =
SPLIT & !BUSREQ1 & HSPLIT = master1 : default;
HGRANT1 & master1 state = transmit & master2 state = mask & HRESP =
SPLIT & BUSREQ2 & HSPLIT = master2 : master2;
HGRANT2 & master2 state = transmit & master1 state = mask & HRESP =
SPLIT & BUSREQ1 & HSPLIT = master1 : master1;

When one master is masked and the slave sends a SPLIT response, mask the other

master as well. If none of the masters are masked and the slave sends a SPLIT

response, mask the active master, and grant access to the other master if it requests

access to the bus. If not, move on to the default master.

153

-- Split masters
HGRANT1 & master2 state = mask & HRESP = SPLIT : default;
HGRANT2 & master1 state = mask & HRESP = SPLIT : default;
HGRANT1 & master2 state != mask & HRESP = SPLIT & BUSREQ2 : master2;
HGRANT2 & master1 state != mask & HRESP = SPLIT & BUSREQ1 : master1;
HGRANT1 & HRESP = SPLIT & !BUSREQ1 & !BUSREQ2 : default;
HGRANT2 & HRESP = SPLIT & !BUSREQ1 & !BUSREQ2 : default;

If a master finishes the transaction, grant access to the other master if it requires

access to the bus. If not, move on to the default master.

-- Master finishes the transaction - round-robin
HGRANT1 & master1 state = transmit & HTRANS = IDLE & HREADY & HRESP =
OK & !BUSREQ1 & !BUSREQ2 : default;
HGRANT2 & master2 state = transmit & HTRANS = IDLE & HREADY & HRESP =
OK & !BUSREQ1 & !BUSREQ2 : default;
HGRANT1 & master1 state = transmit & master2 state != mask & HTRANS =
IDLE & HREADY & HRESP = OK & BUSREQ2 : master2;
HGRANT2 & master2 state = transmit & master1 state != mask & HTRANS =
IDLE & HREADY & HRESP = OK & BUSREQ1 : master1;

If a master cancels its BUSREQ signal, either grant access to the other master (if it has

its BUSREQ signal set), or move to the default master.

-- Master gives up its BUSREQ
HGRANT1 & master1 state = idle & master2 state != mask & HTRANS = IDLE
& HREADY & HRESP = OK & !BUSREQ1 & BUSREQ2 : master2;
HGRANT2 & master2 state = idle & master1 state != mask & HTRANS = IDLE
& HREADY & HRESP = OK & !BUSREQ2 & BUSREQ1 : master1;
HGRANT1 & master1 state = idle & HTRANS = IDLE & HREADY & HRESP = OK &
!BUSREQ1 & !BUSREQ2 : default;
HGRANT2 & master2 state = idle & HTRANS = IDLE & HREADY & HRESP = OK &
!BUSREQ1 & !BUSREQ2 : default;

When a slave requests a masked master to be unsplit, then unsplit that master.

154

-- Unmasking masters
!HGRANT1 & !HGRANT2 & master1 state = mask & HSPLIT = master1 :
master1;
!HGRANT1 & !HGRANT2 & master2 state = mask & HSPLIT = master2 :
master2;
HGRANT1 & master2 state = mask & HRESP = SPLIT & BUSREQ2 & HSPLIT =
master2 : master2;
HGRANT2 & master1 state = mask & HRESP = SPLIT & BUSREQ1 & HSPLIT =
master1 : master1;
HGRANT1 & master1 state = transmit & master2 state = mask & HTRANS =
IDLE & HREADY & HRESP = OK & BUSREQ2 & HSPLIT = master2 : master2;
HGRANT2 & master2 state = transmit & master1 state = mask & HTRANS =
IDLE & HREADY & HRESP = OK & BUSREQ1 & HSPLIT = master1 : master1;
HGRANT1 & master1 state = idle & master2 state = mask & HTRANS = IDLE &
HREADY & HRESP = OK & BUSREQ2 & !BUSREQ1 & HSPLIT = master2 : master2;
HGRANT2 & master2 state = idle & master1 state = mask & HTRANS = IDLE &
HREADY & HRESP = OK & BUSREQ1 & !BUSREQ2 & HSPLIT = master1 : master1;

By default, leave the current preferred master.

1 : preferred;
esac;

As seen from the formalism above, the arbiter design is rather complex even in the

case of two masters. If designers want to support the advanced features of the AMBA

AHB protocol, they need to verify the functionality and performance of the design. In

Section 8.3 we describe how we verified the correctness of the MPSoC designs shown

in Figure 8.4 using the formal models described in this section.

8.2 Digital Camera MPSoC Design Alternatives

In this section we describe three alternative MPSoC designs for a digital camera us-

ing the AMBA AHB bus. The digital camera used for the case study implements

the new JPEG2000 [53] still image compression standard developed by the JPEG

committee. The advantages of JPEG2000 over its predecessor JPEG include lossy

155

Figure 8.3: JPEG2000 Encoder Block Diagram

to lossless compression, Region Of Interest (ROI), multiple resolution representation,

error resiliency, etc. The JPEG2000 encoder is divided into three main parts: image

transformation, quantization and entropy coding. Unlike JPEG, which relies on the

more commonly used Discrete Cosine Transform (DCT), JPEG2000 uses the Discrete

Wavelet Transform (DWT) as it facilitates the notion of progressive image transmis-

sion. JPEG2000’s choice of entropy coding is based on the Embedded Block Coding

with Optimal Truncation (EBCOT) [95].

8.2.1 JPEG2000 Encoder Description

Figure 8.3 shows the block diagram for the JPEG2000 encoder. Designers have the

option of implementing a distributed compression method, where the image is broken

up into tiles, and the compression is carried out for each tile separately. Although this

feature is not required by the JPEG2000 specification we have decided to implement it

to improve the concurrent processing in the system and thus the overall performance of

the MPSoC. Tile size varies, from smaller sizes – 64×64 pixels for memory restrained

designs – to 512×512 for better compression quality. These parameters vary and

designers need to consider the requirements for their specific designs.

After the image is tiled, each tile is passed though the DC Level Shifting step

156

which converts the tile pixels from unsigned integers to two’s complements. In the

next step the tile is passed through the Multi-Component Transform (MCT), which is

in charge of transforming the input tile from RGB color format to either YUV by using

the Reversible Color Transform (RCT), or to YCbCr by using the Irreversible Color

Transform (ICT). RCT can be used in both lossless and lossy compression whereas

ICT can only be used for lossy compression. After the tile has been transformed,

it is processed by the DWT, which further decomposes the tile into different levels

of decomposition. For every pass DWT makes on a tile, depending on the number

of decomposition levels needed, DWT generates four sub-bands, denoted as LL, HL,

LH, and HH, where LL represents the downsampled tile (half the width/height of the

previous tile), and the other three sub-bands represent a residual version of the tile

which are used for the image reconstruction process. Once DWT has processed the

tile it is passed through the quantization step only when lossy compression is used.

The user has the option to declare ROIs, that are encoded independently from the

rest of the image based on user specifications. This allows to use lossless compression

for some (interesting) parts of the image, while using lossy compression for the rest

of the image. Finally, the image (or tile) is processed with EBCOT, which produces

the final bitstream for the image.

EBCOT can be further subdivided into two parts, commonly known as Tier-1 and

Tier-2. Tier-1 is the most computation intensive part of JPEG2000. Because of

the complexity of both DWT and Tier-1, most designers choose to implement these

functionalities in hardware. Tier-2, however, is very control intensive, therefore it is

often implemented in software on the main CPU.

8.2.2 Description of MPSoC Design Alternatives

We consider three design alternatives for the implementation of the digital camera as

shown in Figure 8.4. In Design 3 all communication between the heterogeneous IP

157

Figure 8.4: Design Alternatives of the Digital Camera Case Study using the
JPEG2000 Encoder

blocks uses the AMBA AHB bus, in Design 1 the DWT and EBCOT functional blocks

are combined into a single chip, and Design 2 uses two AMBA AHB buses and two

JPEG2000 encoders to reduce congestion on the buses and increase the throughput

of the digital camera MPSoC. In all of the architectures shown in Figure 8.4, the DWT

module has an internal DMA engine that fetches the tiles from main memory to either

DWT’s local memory or bank A of the tile memory, depending on whether DWT is

currently processing a tile or not. The DWT module is capable of lossless and lossy

compression and implements DC Level Shifting and MCT. In Design 1 and 2 shown in

Figure 8.4 the DWT unit writes the transformed image to bank B in tile memory. The

DWT unit can only write new information if Data Dispatcher has finished fetching

all codeblocks for the previous tile from bank B. Otherwise, the DWT module may be

blocked by the slower Data Dispatcher. In Design 3 the AMBA AHB bus is used to

directly write to the (slave) memory therefore in this design the Data Dispatcher

never blocks the DWT unit.

158

The Data Dispatcher module reads the codeblocks in the tile memory and per-

forms the quantization step on them. Its main job is to feed bitplanes onto each

Bit Plane Coder (BPC) so that at any given time, there could be up to N different

bitplanes being processed by the BPC modules. A BPC is actually the module in

charge of performing Tier-1 on incoming DWT coefficients, and it is subdivided into

two parts, the Context Formatter (CF) and the Arithmetic Coder (MQ-Coder). These

blocks are denoted as CF and MQ in Figure 8.4. Finally, the processed data is collected

by the Data Collector, from which it is written to the main memory through the

AMBA AHB bus.

8.3 Functional Verification of AMBA-based MPSoC Designs

This section describes how we utilized the NuSMV models introduced in Section 8.1

for the functional verification of design alternatives discussed in Section 8.2. We have

considered two problems in our formal analysis. A deadlock can be observed in the

FSM model as a state where no transitions are enabled. A livelock can be observed

as a state from which only a subset of states is reachable. A livelock can express

situations like starvation, where a master is not granted access to the requested slave.

We used the NuSMV tool to verify deadlock-freedom and liveness properties in a

single bus system with two, three, and four masters and one slave, using round-robin

arbitration.

For the functional verification we have considered the case when all the mas-

ters are allowed to concurrently request access to the bus and carry out read/write

transactions in an arbitrary (non-deterministic) manner, and the slave can arbitrarily

split/unsplit masters and issue RETRY responses. This covers all the valid uses of the

bus and therefore can be applied to prove the correctness of the designs. The pro-

posed functional verification does not take the internal computation of components

159

into consideration, rather it treats them as “black boxes” that use the bus according

to the specification. The results described in this section are therefore applicable to

any MPSoC that uses any of the architectures show in Figure 8.4 with a round-robin

scheduler.

Design 1 shown in Figure 8.4 employs three masters on the same bus therefore we

verify the functional correctness of this design using three masters and a slave, and we

verify Design 3 using four masters and a slave. Design 2 shown in Figure 8.4 has two

buses, both of which can access the main memory. In our analysis we assume that the

memory can be accessed from both buses with no risk of deadlocks. This requirement

is provided by the use of a memory unit with two interfaces for data access, and is

guaranteed by hardware. Therefore, we can verify Design 1 by independently verifying

the two AMBA AHB buses with two masters.

We have used the open-source NuSMV model checker to verify Computational

Tree Logic (CTL) [25] properties on the FSMs. During this process we have discovered

several trivial deadlock cases that are covered by the AMBA AHB specification. For

example, we were able to show that a SPLIT response followed immediately by a RETRY

response deadlocks the system, as the master receiving the RETRY response has not

started transmitting on the bus yet. The AMBA AHB specification, however, requires

the slave to issue an OK response following the SPLIT response. Similarly, we found

that the combination of a RETRY response and a low HREADY signal may deadlock the

bus because the master is required to keep its state when the HREADY signal is low,

but is also required to repeat the last transmission since the response is RETRY. These

ambiguities, however, do not have a high practical value as their use does not seem

to be logical in real-life MPSoCs.

To keep consistency all the formulas described in this section apply to the 4-master

Design 2 and Design 3, which we adapted to Design 1 by simply removing any assump-

tions/constraints on (the non-existent) Master4. We have assumed that the following

160

formulas evaluate to true infinitely often (using the JUSTICE NuSMV keyword) in all

MPSoC designs for the analysis: HREADY, HRESP = OK, HSPLIT = master1, HSPLIT =

master2, HSPLIT = master3, HSPLIT = master4. This was necessary to avoid triv-

ial erroneous cases, such as when the slave is never ready to receive data, or when it

continuously sends RETRY responses. Using these assumptions we were able to prove

several properties in all design alternatives shown in Figure 8.4. First we showed

that the error state is unreachable in all the masters and the slave by using the CTL

formulas (x refers to the index used for all masters):

AG (masterx.state != error),

AG (slave.state != error).

The AMBA AHB protocol permits a simple way for livelock by allowing the slave to

arbitrarily split masters. If the slave splits a master and does not unsplit it, we end

up in a livelock condition as the split master never gets a chance to serve requests.

Moreover, if the slave splits all the masters and does not unsplit them the system

deadlocks. We showed these conditions by checking the following CTL formula:

EF (MASK MASTER1 & MASK MASTER2 & MASK MASTER3 & MASK MASTER4).

We had to specify rules within the slave to enforce that whenever two masters

are split one of them will eventually be unsplit. Then we tried to verify whether the

system can always recover from a deadlock caused by the slave by splitting all the

masters on the bus by using the following CTL formula:

AG ((MASK MASTER1 & MASK MASTER2 & MASK MASTER3 & MASK MASTER4) ->

AF (!MASK MASTER1 | !MASK MASTER2 | !MASK MASTER3 | !MASK MASTER4)).

However, to our surprise we found that this property is not necessarily true in all

designs. The proposed model checking method uncovered the undocumented ambi-

guity in the AMBA AHB specification described below.

161

Figure 8.5: Ambiguity in the AMBA AHB Specification

8.3.1 Ambiguity in the AMBA AHB Specification

Despite the fact that the functional verification of the AMBA AHB protocol has been

addressed before by various researchers [88] [93] [7], we were able to uncover an am-

biguity in the protocol that has not yet been documented by other authors. Consider

an MPSoC system based on the AMBA AHB protocol, using two masters (master 1,

master 2) and a slave. The arbiter has to keep track of the masters’ state in order to

manage the split transfers. This could be implemented by providing dedicated wires

between the masters and the arbiter, however this is impractical in most cases as it

requires extra computation and hardware. An alternative method is to monitor the

bus traffic to obtain the master and slave states. The arbiter may use the HTRANS

signal to check whether the master is idle or transmitting (NONSEQ, SEQ), the HBURST

signal to predict the remaining cycles from the transfer, and the HRESP signal to

monitor whether the active master and slave has to step back to repeat a transaction.

The AMBA AHB protocol allows three types of responses by the slave: OK signals

that the transaction in the previous clock cycle has been successfully completed, RETRY

signals that the slave wants the master to repeat the transaction from the previous

clock cycle, and SPLIT is a signal to the arbiter to mask the master. A slave issues

the SPLIT response when it predicts that it will be unable to receive data – a rather

ambiguous definition in the AMBA AHB specification. Later, a slave can signal the

162

arbiter using the HSPLITx signal that it is now ready to process data and requests

that the arbiter unmasks a previously masked master.

Let’s assume that the slave has previously split master 1 (master 1 is masked

by the arbiter), and is in a transaction with master 2 as shown in Figure 8.5. The

slave can unmask master 1 by issuing an HSPLIT1 signal using the masked master’s

address to the arbiter. Consider that the slave tries to unmask master 1 by setting

HSPLIT1 when it issues a RETRY response. The AMBA AHB specification is ambiguous

on what the arbiter should do in this case. The specification says that a master has

to repeat the last transaction when it receives the RETRY response. If the arbiter

monitors the bus signals to keep track of the masters’ states it will try to go back to

its previous state to keep synchronized with the master and the slave. However, if the

arbiter implements this behavior it will not unmask master 1 as the client requests.

Since there is no acknowledgement for HSPLITx signals the client thinks that master -

1 is already unmasked, and won’t request that the arbiter unmasks it again. This

may result in deadlock as master 1 never gets access to the bus again. The AMBA

AHB specification states, that “A slave which issues RETRY responses must only be

accessed by one master at a time.” Thus we could not reach an agreement whether

the “access” refers to access through the bus or access by being split by the slave -

which would cover this deadlock, but would also imply that a slave cannot issue a

RETRY response if it may split a master.

8.3.2 Resolving the Ambiguity

Once we recognized the possibility for deadlock we tried to resolve the ambiguity and

show the correctness of the design. We have disallowed the simultaneous use of the

HRESP = RETRY and the HSPLITx signal – that have caused a deadlock as described

above – using a simple constraint, and tried to verify whether the system can always

recover from a deadlock caused by the slave by splitting all the masters on the bus

163

by using the CTL formulas below:

AG ((MASK MASTERx & MASK MASTERy) ->

AF (!MASK MASTERx | !MASK MASTERy)),

AG ((MASK MASTER1 & MASK MASTER2 & MASK MASTER3) -> AF (!MASK MASTER1 | !MASK -

MASTER2 | !MASK MASTER3)),

AG ((MASK MASTER1 & MASK MASTER2 & MASK MASTER3 & MASK MASTER4) ->

AF (!MASK MASTER1 | !MASK MASTER2 | !MASK MASTER3 | !MASK MASTER4)).

Using the constraint that disallows the simultaneous use of the HRESP = RETRY

and the HSPLITx signal we were able to show that the MPSoC design works correctly.

We were able to show that all bus requests by the masters eventually get served in

the constrained MPSoC designs by the arbiter by checking the following CTL formulas:

SPEC AG (masterx.state = busreq -> AF HGRANTx), SPEC AG (masterx.state = busreq

-> AF masterx.state = write).

These formulas ensure that the system does not deadlock or livelock and show the

correctness of our designs.

8.4 Performance Evaluation of AMBA-based MPSoC Designs

This section describes the proposed method for performance evaluation that combines

the transaction-level simulation approach with model checking.

8.4.1 Simulation-based Evaluation

The abstraction we chose for simulation-based evaluation is Cycle Count Accurate At

Transaction Boundaries (CCATB) [84], and the functional behavior of each module is

“cycle-count-accurate”. Each one of the blocks in Figure 8.4 is implemented as SC -

164

Table 8.1: JPEG2000 Encoding SystemC Simulation Results for Design 1 Shown in
Figure 8.4 using 64×64 pixel Tiles (for a single tile). Scale: cycles

Image DWT Tier-1 BC Tier-1 WC Tier-2 Input Output End-to-end

baboon 194188 517005 741519 9122240 12288 11099 10335043
boat 194188 165141 737046 8750875 12288 10046 10044857

goddesses 194188 513846 772461 8663630 12288 11456 9996487
goldhill 194188 242055 747954 8672436 12288 10376 9978464

lena 194188 461601 769239 8689815 12288 11979 10024198

Table 8.2: JPEG2000 Encoding SystemC Simulation Results for Design 2 Shown in
Figure 8.4 using 64×64 pixel Tiles (for a single tile). Scale: cycles

Image DWT Tier-1 BC Tier-1 WC Tier-2 Input Output End-to-end

baboon 194188 612189 741951 9122240 12288 10546 10385552
boat 194188 362484 741915 8750875 12288 9482 9999909

goddesses 194188 373950 743544 8663630 12288 11811 9936290
goldhill 194188 483885 742743 8672436 12288 10481 9936927

lena 194188 206181 741753 8689815 12288 9689 9950482

Table 8.3: JPEG2000 Encoding SystemC Simulation Results for Design 3 Shown in
Figure 8.4 using 64×64 pixel Tiles (for a single tile). Scale: cycles

Image DWT Tier-1 BC Tier-1 WC Tier-2 Input Output End-to-end

baboon 194188 513675 731124 9122240 12288 8622 10351259
boat 194188 390141 721467 8750875 12288 7842 9963563

goddesses 194188 505197 766737 8663630 12288 8157 9926747
goldhill 194188 411192 736254 8672436 12288 8592 9907612

lena 194188 416304 756117 8689815 12288 8031 9943368

MODULE which is a special class in SystemC used to declare modules. Communication

between modules is implemented through SC PORTS using SC SIGNALS.

Within each SC MODULE there may be several concurrently executing threads, de-

clared as SC THREAD in SystemC. For instance, DWT has a tiling engine thread that

emulates DMA and fetches the tiles from main memory, a compute thread that em-

ulates the DWT lifting kernel and wakes up when the controller signals that there is

a tile ready to be processed, a read thread that fetches tiles from tile memory, and a

write thread that writes DWT coefficients to tile memory. The Data Dispatcher has

two threads, one that reads DWT coefficients from tile memory and the main data

dispatcher thread that distributes the bitplanes among all of the bit plane coders in

165

Table 8.4: JPEG2000 Encoding SystemC Simulation Results for Design 1 Shown in
Figure 8.4 using 128×128 pixel Tiles (for a single tile). Scale: cycles

Image DWT Tier-1 BC Tier-1 WC Tier-2 Input Output End-to-end

baboon 751393 2315254 3151948 9010373 49152 36537 14290609
boat 751393 1764568 3086892 8758372 49152 41719 13990027

goddesses 751393 1843190 3219664 9451990 49152 42391 14823509
goldhill 751393 2325098 3173076 8768459 49152 41645 14090307

lena 751393 2364360 3241400 8793070 49152 37578 14172351

Table 8.5: JPEG2000 Encoding SystemC Simulation Results for Design 2 Shown in
Figure 8.4 using 128×128 pixel Tiles (for a single tile). Scale: cycles

Image DWT Tier-1 BC Tier-1 WC Tier-2 Input Output End-to-end

baboon 751393 2530709 2872989 9010373 49152 37755 13921490
boat 751393 1693281 2851434 8758372 49152 33136 13578227

goddesses 751393 1897617 2998701 9451990 49152 43176 14502501
goldhill 751393 1935384 2901609 8768459 49152 32449 13682391

lena 751393 1759751 2904408 8793070 49152 32471 13690690

Table 8.6: JPEG2000 Encoding SystemC Simulation Results for Design 3 Shown in
Figure 8.4 using 128×128 pixel Tiles (for a single tile). Scale: cycles

Image DWT Tier-1 BC Tier-1 WC Tier-2 Input Output End-to-end

baboon 751393 1778247 2863026 9010373 49152 32298 13819444
boat 751393 1723257 2790918 8758372 49152 36460 13479349

goddesses 751393 1778346 2939823 9451990 49152 29430 14315158
goldhill 751393 1758681 2884545 8768459 49152 31797 13603176

lena 751393 1763469 2947986 8793070 49152 29820 13674139

round robin fashion.

The CF and the MQ-Coder both have three separate threads, a read (from input

First In First Out (FIFO)) thread, a write (to output FIFO) thread and a compute

thread. The Data Collector module also has two threads, one for reading from

the bit plane coder output FIFOs in round-robin fashion, and one for writing the

encoded data back to main memory. The exhaustive verification of the SystemC

model is practically infeasible due to the large number of threads and the degree of

non-determinism present in the simulation models.

The SystemC model is configured using a configuration script that sets up its

parameters based on the input image that the model will process. The parameters

166

include tile width, tile height, image width, image height, DWT decomposition levels,

etc. The script configures and runs the model for a given amount of test images.

From each simulation run we obtain the execution intervals for processing tiles, and

the size of compressed tiles sent over the AMBA AHB bus.

Tables 8.1–8.6 show the parameters that we have obtained by the SystemC sim-

ulations. We have run simulations on five different pictures using 64 × 64 and 128

× 128 pixel images as input for the compression. The Tier-1 columns describe the

measured execution time of the Tier-1 JPEG2000 compression in execution cycles,

Tier-2 columns correspond to the software implementation of Tier-2 on the main CPU.

The Input column shows the size of the tile as input to the DWT and Tier-1, Output

specifies the worst case size of the tile after the compression in Tier-1.

We see that both Design 2 and 3 improve upon the performance of Design 1 slightly

on average, however for the baboon image Design 1 has the lowest worst case end-

to-end computation time. The main source of performance gain in Design 2 is the

reduced congestion on the AMBA AHB bus. In Design 3 performance gain is obtained

because of the non-blocking communication between the DWT and the EBCOT unit.

Design 2 does not seem to benefit from using 2 JPEG2000 encoders as the performance

bottleneck is the CPU. However, to measure the expected performance gain in case

a faster CPU is used we ran simulations to obtain the average throughput of the

JPEG2000 Encoder(s) in all designs as shown in Tables 8.7–8.8. These tests adhere

to our expectations that the two JPEG2000 Encoders should have nearly twice as

much throughput as a single one.

8.4.2 Model Checking-based Performance Evaluation

This section describes how we utilized model checking to evaluate the worst case

behavior of the digital camera design alternatives shown in Figure 8.4 based on the

simulation results described in Subsection 8.4.1 above. The simulations give us very

167

Table 8.7: Average Throughput of the JPEG2000 Encoders SystemC Simulation
Results using 64×64 pixel Tiles. Scale: tile/sec

Image Design 1 Design 2 Design 3 Design 2 vs 1 Design 3 vs 1

baboon 186.71 365.65 187.70 1.9583 1.0052
boat 198.68 371.32 198.84 1.8690 1.0008

goddesses 190.59 364.43 187.55 1.9121 0.9841
goldhill 188.70 365.23 188.36 1.9355 0.9982

lena 190.72 368.43 187.80 1.9318 0.9847

Table 8.8: Average Throughput of the JPEG2000 Encoders SystemC Simulation
Results using 128×128 pixel Tiles. Scale: tile/sec

Image Design 1 Design 2 Design 3 Design 2 vs 1 Design 3 vs 1

baboon 48.47 93.11 49.86 1.9211 1.0287
boat 50.89 94.18 52.39 1.8506 1.0295

goddesses 49.03 94.03 49.99 1.9179 1.0196
goldhill 49.03 93.16 50.02 1.9003 1.0203

lena 48.84 93.80 49.94 1.9204 1.0224

Table 8.9: Parameters used for Performance Evaluation by Model Checking. Scale:
104 cycles

Case study M 1 M 2 BC M 2 WC M 3 BC M 3 WC M 4 BC M 4 WC

Design 1 64× 64 1 35 97 866 913 N/A N/A
Design 1 128× 128 1 251 400 875 946 N/A N/A

Design 2 64× 64 1 40 94 40 94 866 913
Design 2 128× 128 1 245 376 245 376 875 946

Design 3 64× 64 1 19 19 39 77 866 913
Design 3 128× 128 1 75 75 172 295 875 946

Table 8.10: Worst Case Bounds on the End-to-end Computation Times of the Designs
Shown in Figure 8.4 obtained using Model Checking. Scale: cycles

Tile size Design 1 WCET Design 2 WCET Design 3 WCET

64× 64 pixel tiles 10670000 10580000 10540000
128× 128 pixel tiles 17000000 16800000 16600000

accurate results for the end-to-end processing of image tiles, however they can only

cover a few execution traces of the system. The formal model checking approach

provides the means to evaluate larger design spaces to obtain the worst case end-

to-end execution time of the overall MPSoC designs. The formal models used for the

evaluation are cycle-accurate on the bus transaction-level.

We have shown in Section 8.3 how we proved the overall functionality of the sys-

168

tem. The FSM models used for the performance evaluation are more lightweight than

for the functional verification described in Section 8.3; we do not consider split trans-

actions, RETRY responses, or blocking slaves (HREADY is assumed to be set), as these

functionalities are not used in the digital camera design alternatives shown in Fig-

ure 8.4. Although these assumptions are not required for the performance analysis

they increase the model checking scalability.

We have used simple Boolean variables to model the interrupts and signals in the

digital camera, thus enforcing the dependencies between components. Although finite

state machine is inherently an untimed model of computation it can capture time on

a discrete time scale as transitions can be ordered. In our analysis we have declared

a global time variable that is increased at every cycle.

Since most model checkers (including NuSMV) are optimized for property checking

by giving yes/no answers, we had to conform to several restrictions. First, the per-

formance analysis has to be be expressed as a reachability problem: when Master 3

has written its data to the memory is the execution time always smaller than some

value x? Formally using CTL formula: AG (finish -> TIME < x), where finish is

the signal generated by the CPU (master 1) when it is in the write state and it has

written all the required data to the memory. Second, the state space used by NuSMV

is influenced by the range of variables used in the model. To overcome this problem

we have increased the timescale of the simulation (from cycles to 1000 cycles), thereby

creating an abstraction of the system that is cycle-approximate with the highest pre-

cision available without hitting the state explosion problem. Table 8.10 summarizes

the results of formal model checking on the worst case execution bounds of the digital

camera design alternatives.

The proposed method is computationally intensive, and its performance degrades

exponentially with respect to the state space size of the analyzed system. This might

present scalability issues when trying to apply the method for large-scale MPSoCs. In

169

this case, the combination of several techniques may be used. First, we might increase

the scalability by increasing the timescale of the analysis, at the loss of some precision.

Second, the method can be hierarchically composed. End-to-end execution times for

MPSoCs can also be represented as intervals thus providing a way to encapsulate larger

MPSoC designs as a single component. Third, we can limit how many execution traces

we want to capture in the models i.e. by using constant execution times.

8.4.3 Evaluating the Performance Estimation Results

Figure 8.6 summarizes the experiments performed for the performance estimation of

the digital camera MPSoC design alternatives shown in Figure 8.4. Each group of 3

bars shows the cycle estimates we obtained for a design alternative with a given tile

size.

The first bar (D 1 64×64 Block) illustrates the block performance estimates for

Design 1 with 64×64 pixel tiles given in Table 8.1. The bar shows the best case cycle

estimate for the Tier-1 block, the difference between Tier-1 WCET and Tier-1 BCET

(so that the height of the two blocks corresponds to Tier-1 WCET), the Tier-2 BCET

estimate, and the difference between Tier-2 WCET and Tier-2 BCET. Naturally, Tier-1

and Tier-2 of the EBCOT algorithm are the most computationally intensive blocks of

the camera design, and therefore provide a lower bound on the expected performance

of the digital camera design.

The second bar (D 1 64×64 Sim) illustrates the end-to-end performance of Design

1 obtained by simulations as shown in Table 8.1. These results include all blocks for

the performance estimation, as well as the overhead of the communication, such as

reading/writing tiles from/to the memory through the AMBA AHB bus.

To obtain the true worst case performance estimates, we build on model checking

to explore the finite state machine models augmented with execution parameters for

each block as described in Section 8.4.2. The third bar (D 1 64×64 MC) shows the

170

Figure 8.6: Performance Estimation of MPSoC Design Alternatives Shown in Fig-
ure 8.4

worst case performance estimate that we were able to prove assuming that the best

and worst case execution time parameters used for masters/slaves were correct. This

approach does not provide a “hard” bound on the worst case performance estimate,

since we build on simulation results to estimate the performance of the individual

blocks. In realistic design problems, however, designers are less concerned about

the performance of individual blocks than choosing the right design alternative that

provides the best performance based on their assumptions.

8.4.4 The Impact of Transaction-level Simulations and Model Checking

on the Accuracy of the Performance Estimates

In Figure 8.7, we quantified the difference between the worst case estimates obtained

by analytic results, simulations, and model checking shown in Figure 8.6. The com-

munication overhead and bus congestions are responsible for the difference in the

worst case performance estimates obtained by analytic calculations and simulations.

The first bar of each group of 3 bars shows the communication overhead estimated by

simulations as opposed to not considering the communication subsystem. For 64×64

tiles the difference is less than 5%, showing that the AMBA AHB bus rarely encounters

any congestion, and the overhead is nearly negligible. Once we consider 128×128 tiles,

171

Figure 8.7: Communication Overhead Estimates by Simulations and Model Checking

we see that simulations estimate that the communication through the AMBA AHB bus

is responsible for ∼15–20% overhead in the worst case. Since larger tiles are used,

the number of memory accesses while processing a tile increase significantly, simply

because we deal with larger data sets. The first bars in each group in Figure 8.7 show

that simulations are essential to accurately predict the impact of the communication

overhead.

Let us now consider the practical impact of applying model checking to obtain end-

to-end performance estimates. The primary difference between simulation results and

model checking results are due to the fact that model checking considers the end-to-

end worst case execution time by performing an exhaustive state space search. During

simulations, we can only cover a few execution traces of the MPSoC designs, and

therefore we cannot estimate the impact of non-deterministic delays and congestions.

Moreover, we cannot quantify the coverage of the performance estimates either.

The second bar of each group of 3 bars shows the communication overhead es-

timated by model checking as opposed to simulations. This basically shows that

our simulations are not “pessimistic” enough, and cannot find the actual worst case

end-to-end performance of the design. This is mainly due to the fact that not all

functional blocks experience their worst case behavior at the same time, and the

simulations do not encounter the maximum number of possible congestions on the

AMBA AHB bus. As with simulations, the impact of considering model checking for

172

performance estimation grows as the complexity of the design grows, and accounts to

nearly 15%. This practically means that the actual performance of the design may

be 15% worse than the worst case performance estimate obtained by simulations.

Finally, the third bar of each group of 3 bars shows the communication overhead

estimated by model checking as opposed to the analytical method, where we did not

consider the AMBA AHB bus. In this case, the difference may be more than 35%,

showing that analytical methods simply cannot estimate the worst case performance

of the digital camera MPSoC designs with acceptable accuracy.

By considering both simulations and model checking, we obtained performance

estimates for the worst case end-to-end performance of the digital camera design

early in the design flow, and improved the accuracy of the performance estimate

compared to simulations by around 3% when 64×64 pixel tiles are used, and nearly

15% when 128×128 tiles are used.

The performance analysis shows that Design 3 offers the best worst case end-to-end

processing, while Design 2 is second (as the bottleneck is the CPU not the encoder

block), and Design 1 is the slowest alternative. Our results show that the formal

performance analysis is able to provide tight worst case execution numbers for the

end-to-end processing of the digital camera MPSoC design alternatives.

The proposed formal performance evaluation method is unique compared to simu-

lation-based evaluations as it covers orders of magnitude larger design spaces. The

application of the method allows designers to avoid the common mistake of underes-

timating the worst case performance of MPSoCs as a result of inadequate coverage by

simulations.

173

Chapter 9

Cross-abstraction Real-time Analysis of Bus Matrix
MPSoC Designs

This chapter builds on methods originally developed for the real-time verification and

performance estimation of software-intensive Distributed Real-time Embedded (DRE)

systems, including the methods presented in Section 5, Section 6 and Section 7. Bus

protocols and arbitration policies have a major impact on key design parameters in

Multi-processor System-on-Chip (MPSoC) designs such as throughput and delays, and

present new challenges for functional verification. A key contribution of this chapter

is to show how methods for the analysis of DRE systems can be adapted to MPSoC

designs utilizing fully connected bus matrix interconnects, and how point arbitration

policies can be expressed by the non-preemptive scheduling of task graphs.

Model-based design is an emerging paradigm that aims to manage this complexity

by systematically capturing key properties of MPSoCs, such as their structure, param-

eters of individual components, and their interactions. This chapter introduces the

model-based Cross-abstraction Real-time Analysis (Carta) framework for the cross-

abstraction analysis of MPSoC designs, that combines the concepts of component-

based design, domain-specific modeling, simulations, and model checking to provide

a unified framework for the functional and performance analysis of MPSoCs with bus

matrix interconnection networks. The design flow aims to address three major chal-

lenges in the formal analysis of MPSoC designs: (1) functional verification - to ensure

that the system will not be trapped in a deadlock or livelock state, (2) performance

estimation - in order to obtain tight bounds on the worst case performance of the MP-

SoC design, and (3) verification of real-time properties - to prove whether individual

deadlines for tasks and performance estimates hold for the MPSoC design.

174

Figure 9.1: The Carta Model-based Analysis Framework

Finding the right abstraction is a key challenge for the model-based analysis of

MPSoC designs. Figure 9.1 shows our proposed cross-abstraction real-time analysis

framework that provides a way to utilize the right level of abstraction for each analysis

method. The three challenges addressed by our proposed analysis framework – func-

tional verification, performance estimation, real-time verification – require different

approaches, models of computation, abstractions, and tools for formal analysis. We

pick the model of computation and abstraction level for each analysis method that

provides the most efficient analysis.

For functional verification, it is important to accurately capture the signals in the

bus matrix interconnection network. If the analysis model is too abstract, certain

problems can remain undetected in the design phase. In our framework, we make

use of a cycle-accurate Finite State Machine (FSM) Model of Computation (MoC) to

capture the bus protocol, and arbitration algorithms. Using this model, we can effi-

ciently check for all combinations of communication signals that satisfy the protocol

to verify that no deadlocks and starvations occur in the MPSoC design.

The effectiveness of performance estimation and real-time verification, on the other

hand, is primarily limited by scalability issues. Cycle-accurate FSM models quickly

lead to the state space explosion problem, when used for performance estimation,

175

or real-time verification. Therefore, we need to raise the abstraction to transaction-

level formal models. Transaction-level abstractions are well-established in the domain

of simulation-based design exploration [81]. Transaction-level formal models in our

context are event-driven, and communicate via asynchronous message passing. Tim-

ing information in the models is captured as time intervals associated with events.

We apply the transaction-level modeling concept to increase the scalability of formal

methods in the Carta framework.

The Carta framework builds on various modeling and analysis tools created by the

research community and the authors. We utilize the Generic Modeling Environment

(GME) [61] as a modeling tool for designing Analysis Language for Distributed, Em-

bedded, and Real-time Systems (Alderis) [68] models (http://alderis.ics.uci.

edu), as described in Section 9.2. Domain-specific Modeling Languages (DSMLs) in

our approach are defined by the concept of model-integrated computing [11], that

promotes the use of meta-modeling to create custom modeling languages which are a

good fit for a specific problem domain. Alderis captures key properties of a MPSoC

design, such as computation units, inter-component dependencies, the mapping of

tasks to HW or SW, execution times and delays, and key constraints that the design

has to satisfy. MPSoC designs are specified using the Alderis DSML, and drive the

Carta model-based analysis framework.

Alderis models of MPSoC designs are executable Discrete Event (DE) models

with formal semantics. These models can be transformed into FSM models with

cycle-accurate timing accuracy. We utilize the open-source Distributed Real-time Em-

bedded Analysis Method (Dream) tool for the performance estimation of Alderis

models, and the NuSMV [1] model checker for the functional analysis of the FSM mod-

els. The Dream tool also generates a direct Timed Automata (TA) representation of

Alderis models, that can be analyzed by the Uppaal [26] and Verimag IF [15] TA

model checkers.

176

http://alderis.ics.uci.edu
http://alderis.ics.uci.edu

Simulations form an integral part of the proposed design flow, and provide accu-

rate task execution times and delays to the Alderis models. For the purposes of

simulation, we capture MPSoC designs in the SystemC [101] modeling language at

the Cycle Count Accurate At Transaction Boundaries (CCATB) modeling abstrac-

tion [84]. SystemC is a C++ library that provides a rich set of primitives for model-

ing communication and synchronization. The CCATB modeling abstraction is a form

of transaction-based bus cycle accurate model that enables fast and accurate perfor-

mance estimation for MPSoC designs. CCATB captures transactions in the design using

function calls which allow a significant speedup in simulation. For instance, in the

ARM Advanced Microcontroller Bus Architecture Advanced High-speed Bus (AMBA

AHB) [8] on-chip communication architecture, hundreds of signals can transition dur-

ing a data read or write issued from a processor to a memory. In the CCATB model,

a read() or write() function call captures the functionality of the hundreds of sig-

nals, while still maintaining cycle accuracy required for meaningful exploration. This

leads to a reduction in modeling time, and improves simulation speed by several or-

ders of magnitude over signal-accurate C++ or Register-Transfer Level (RTL) models.

CCATB also performs additional optimizations, such as effectively clustering static MP-

SoC delays and incrementing simulation time in chunks, to further improve simulation

speed. The contributions of this chapter are focused on the following areas:

• We utilize the Alderis DSML introduced in [68] for the formal modeling of

MPSoCs with bus matrix interconnection networks. Alderis was proposed as

a DSML for the modeling of software-intensive DRE systems. In this chapter

we extend the use of Alderis to complex bus matrix architectures commonly

used in modern MPSoCs. The novelty in this chapter is to show how complex

bus designs can be abstracted out as transaction-level models, and how we

translate resource allocation to the Alderis task graph model. The Alderis

DSML is used as a high-level specification of the MPSoC, and directly drives the

177

functional verification, performance estimation, and performance verification

methods. This is described in more detail in Section 9.2.

• We describe an approach for the functional verification of MPSoCs using AMBA

AHB bus matrix interconnection networks. We extend earlier work on the ver-

ification of simple bus designs [73] to handle complex bus matrix structures.

We use finite state machine models of the AMBA AHB protocol with cycle-

accurate timing information to formally verify deadlock-freedom. We describe

this method in Section 9.3.

• We utilize a Discrete Event Simulation (DES)-based formal performance esti-

mation method described in [70] to estimate the real-time performance of a

networking MPSoC design. By switching to more abstract representation of the

design, we achieve significant speedups and scalability increase with negligible

accuracy loss. Section 9.4 describes results for this work.

• We build on our earlier work on the real-time verification of DRE systems [67,

65, 66] to propose a method to verify estimates for real-time performance using

TA model checkers. By incorporating TA model checkers in the design flow,

we can prove that the model satisfies the performance estimates achieved by

the DES-based method. Section 9.5 presents this TA-based real-time verification

method.

• Finally, the major contribution of this chapter is that it tightly integrates all

of the above steps in the Carta model-driven design analysis framework. This

approach provides a way to use time-accurate models for functional verifica-

tion, and more abstract representations for scalable performance estimation.

By adopting the right abstractions to different steps of the analysis, we can

significantly increase scalability when needed, while also retaining accuracy for

178

Figure 9.2: Networking Router MPSoC HW Design

steps where it is needed. We compare the scalability of the proposed methods

in Section 9.6.

9.1 Networking Router MPSoC Design

To demonstrate the effectiveness of our design flow, we use Carta to explore a

networking router case study. This design is a high-level abstraction of a router design

by Conexant Systems, that was first described in [83]. This system is used for data

packet forwarding, processing and encoding. The MPSoC design implementation for

this case study consists of multiple processors, memories and network interfaces, and

a bus matrix interconnection network. The different application tasks are mapped

onto the MPSoC components shown in Figure 9.2. The figure shows a simplified

version of the hardware platform, without peripherals (i.e. timer, interrupt controller,

Universal Asynchronous Receiver/Transmitter (UART), etc.) and without the Direct

Memory Access (DMA) engine, for clarity. The major components in the MPSoC

179

are the two embedded processors (CPU 1 and CPU 2), a post processing Application-

specific Integrated Circuit (ASIC) (PostProc), an encrypt engine ASIC (Enc), on-

chip memories (MEM 1 and MEM 2), network interfaces to communicate with external

components(IF1 to IF6), and an AMBA AHB bus matrix interconnection network to

facilitate inter-component communication on the MPSoC.

Figure 9.3 shows a high level overview of the software design modeled as a task

graph, as well as the mapping of the different tasks onto the MPSoC components.

Computation tasks (T) mapped to the same processing unit communicate directly

with each other. The blocks marked as (B) represent accesses to the bus matrix,

either to read/write one of the memory units (M), or to communicate with the exter-

nal environment through network interfaces (IF). Processor CPU 1 is used to execute

tasks associated with the intrusion detection functionality, while processor CPU 2 ex-

ecutes tasks associated with the simple protocol translation and packet forwarding

functionalities. The encrypt engine ASIC block is optimized for data encoding, and

executes tasks that perform different encodings on packet data. A post-processing

ASIC block is used to speed up the back-end of the protocol translation, as well as

the encoding functionalities.

We now describe the networking router application case study in more detail.

The system receives data packets from the network interface (IF) components. The

receiver (PktRx) tasks are responsible for data packet pre-processing and preliminary

decoding. Subsequently, the system performs multiple functions - intrusion detection,

simple protocol translation, forwarding, and packet encoding. The intrusion detection

functionality consists of a Chk task that is used to check if the packets have not been

subjected to some suspicious activity, as would be the case if there is an intrusion. The

HdrCal task is used to perform data packet processing to detect intrusions, based on

user-defined intrusion signatures. If an intrusion is detected, then reports of suspicious

activities are generated. Finally the packets are stored in physical memory Mem 1 by

180

Figure 9.3: Networking Router MPSoC SW Design

the Mem1 task from where another subsystem either blocks the flow, or passes the

packets on to the next router. In the simple protocol translation functionality, the

Proc1 task is used to strip the source protocol and store the data packets into physical

memory Mem 1 by task Mem2. The memory also consists of a set of translational

templates. These templates are used by the Cnfg task to strip the source protocol

header, and then append the new protocol information to the data. The Recalc 1

task finally reorders the data payload and new header, and sends out the packets

to an outgoing network interface. The Assm task is used instead of the Cnfg and

Recalc 1 tasks if the protocol translation is fairly lightweight (for instance if the

source and destination protocols are similar). The forwarding functionality consists

of a task Pkt fwd which receives a packet and updates the header data (i.e., updating

time stamps and stripping source routing fields), and then forwards the data to the

output interface. Enc implements the packet data encoding functionality, and stores

181

the results into physical memory Mem 2 by task Mem3. Subsequently, task Recalc 2 is

responsible for reordering the data payload and creating a header. Task Proc2 is used

to finally perform post-processing the packet data headers before forwarding them to

the output network interface.

9.2 Modeling Bus Matrix-based MPSoC Designs

9.2.1 Modeling the Router MPSoC using Alderis

The networking router design shown in Figure 9.2 uses an AMBA AHB bus matrix

interconnection network. This architecture simplifies the arbitration policy – simple

point arbitration is used at the slaves (either memories or network interfaces) to

determine which master gets access to the slave. If the slave is not already busy

serving a master, any master can get access to it immediately, and transmit data

through its dedicated bus to the slave. If the slave is already busy serving a request,

then the masters trying to access the slave are forced to wait. When the slave is

free again, the master with the highest priority gets access to the slave. This simple

point arbitration policy provides a great fit for simple task scheduling problems –

the memory is modeled as a task, and scheduling this task for execution represents

the access of the memory by other tasks. This abstraction provides a simple, but

accurate model to capture the event flow between tasks, as well as memory and

interface accesses through the bus matrix.

In the following we describe how we used the Alderis DSML to model the case

study described in Section 9.1. Tasks and interfaces are modeled as Alderis tasks.

We introduce First In First Out (FIFO) buffers between tasks in order to (1) capture

communication delays on the bus, and (2) buffer events, in case the task is already

executing, and not able to receive the event yet. Dependencies in the Alderis task

graph follow the SW design dependencies. However, there are some differences, as the

182

Figure 9.4: Alderis Model of the Router MPSoC in the GME Tool

Alderis models capture concurrency, real-time properties, and scheduling as well.

We add timers to the model that represent the sampling rates over the input interfaces.

Timers periodically push events, that represent data received from the environment.

The task graph is event-driven and asynchronous, therefore further event propagation

is not synchronized, timers are solely used as a triggering mechanism.

Figure 9.3 shows the dependencies in the SW design. It does not, however, capture

the semantics of the event flow. There are four branches in the model (from IF1, IF2,

IF3, and Mem2). The branches from IF1, IF2, and IF3 represent a choice where only

one path is taken. The branch from Mem2 to Assm and Cnfg represent broadcast – both

dependents receive the event, and process it when they are scheduled for execution.

The CPU 2 HW component shown in Figure 9.3 is modeled as two independent

(logical) HW units in the Alderis model shown in Figure 9.4 (CPU 2 a and CPU -

2 b). This change is a direct result of the semantics of the DRE MoC [70]. In the

DRE MoC, tasks and timers broadcast events to all dependents, and cannot selectively

send events to a subset of dependents. The main reason that justifies this behavior is

that we want to capture all execution paths in the model for performance estimation,

183

rather than choosing between non-deterministic branches.

IF2 is the interface for the protocol translation functionality. Depending on

whether the data is forwarded or stored in the memory for further processing, one of

two distinct event paths is taken from IF2. Although both paths execute on the same

processing unit CPU 2, these two paths cannot be active at the same time; either the

PktRx3, Proc1 path is taken (and then Mem2 and so on), or the PktRx4, Pkt fwd, IF5

path. Even though these paths are mapped to the same processing unit, they are not

concurrent. Therefore, we execute both paths in parallel for performance estimation.

By introducing a new logical processing unit, CPU 2 b, we can simultaneously explore

both paths at the same time.

We encounter the same situation at the branch from IF1; either PktRx1, or

PktRx2 is chosen to process the packages arriving through the interface. There-

fore, we have the option to introduce a new logical processing unit, to capture the

fact that PktRx1 and PktRx2 do not execute at the same time. We choose a dif-

ferent option in this case, however, since the rest of the processing is the same in

both cases; the only difference is between the receiving tasks PktRx1 and PktRx2.

We simply substitute a new logical task (PktRx1/2), with a best case execution time

(bcet) of min[bcet(PktRx1), bcet(PktRx2)], and a worst case execution time (wcet)

of max[wcet(PktRx1), wcet(PktRx2)]. Regardless of which execution path is taken

(PktRx1 or PktRx2), task PktRx1/2 captures the execution intervals of both tasks,

and therefore can be used for worst case performance estimation. This method in-

creases scalability with minimal loss of accuracy, and is therefore preferable in the

early stages of the design flow. We apply the same idea for the branch from IF3,

and substitute tasks PktRx5 and PktRx6 with the PktRx5/6 logical task. Finally, the

branch from Mem2 follows broadcast semantics to dependents, and therefore requires

no changes in the Alderis representation. The resulting Alderis model shown in

Figure 9.4 captures dependencies between tasks, the mapping of tasks to the target

184

platform, as well as timing information of the networking router MPSoC design, and

allows formal analysis as described in the following sections.

9.3 Functional Verification of AMBA AHB Bus Matrix

MPSoC Designs

In this section we extend the modeling of AMBA AHB communication buses introduced

in Section 8.3 to AMBA AHB bus matrix interconnects. In a fully connected bus

matrix, there is a dedicated AMBA AHB bus between each master and slave. Point

arbitration is used to manage access to slaves (such as memories). The bus matrix

design increases throughput and concurrency, as multiple transactions can take place

simultaneously between different masters/slaves.

In bus matrix designs, the functional verification is simplified. Each bus in the

bus matrix connects a single master to a single slave. Therefore, congestions on the

bus are greatly reduced, and can only appear when the slave is busy serving another

master. There are altogether 11 buses in the networking router case study, as shown in

Figure 9.2. Point arbitration is managed by a simple fixed-priority arbiter. Priorities

for masters are defined as follows (in decreasing order): CPU 1, CPU 2, PostProc,

Enc.

Since there is only one master and slave on each bus, the arbiter has no reason to

interrupt a transfer by a master. Therefore, HLOCK signals have no practical use in a

fully connected bus matrix. Nevertheless, it depends on the master whether it uses

this feature or not. A master that does not deassert HLOCK could cause a livelock

by disallowing the slave to serve other masters. However, it is the responsibility of

the master to manage the HLOCK signal, and a master that does not deassert HLOCK

would be considered faulty. When the master deasserts HLOCK, the arbiter is free to

continue where it left off, so no livelocks can occur.

185

Algorithm 9.1 NuSMV Specification of an AMBA AHB Arbiter Managing a Single
Master and Slave
MODULE bus matrix arbiter (HTRANS, HREADY, HRESP, BUSREQ, HGRANT, HMASTER,
HSPLIT)

VAR
master state : idle, mask, grant, transmit;
master prev state : idle, mask, grant, transmit;
lasterror : boolean;
preferred : master, default;

ASSIGN
init (master state) := idle;
init (master prev state) := master state;
init (lasterror) := 0;
init (preferred) := default;
next (master prev state) := master state;
next (preferred) :=
case
-- Master starts the transmission
!HGRANT & master state != mask & HREADY & HRESP = OK & BUSREQ :

master;
-- Split master
HGRANT & HRESP = SPLIT : default;
-- Master finishes the transaction
HGRANT & master state = transmit & HTRANS = IDLE & HREADY & HRESP =

OK & !BUSREQ :
default;

-- Master gives up its BUSREQ
HGRANT & master state = idle & HTRANS = IDLE & HREADY & HRESP = OK &

!BUSREQ : default;
-- Unmasking masters
!HGRANT & master state = mask & HSPLIT = master : master;
1 : preferred;

esac;
next (master state) :=
case
-- Roll back for retrys
HRESP = RETRY & !lasterror : master prev state;
master state = idle & HREADY & HRESP = OK & HGRANT : grant;
master state = grant & HTRANS != IDLE & HREADY & HRESP = OK & HGRANT

: transmit;
master state = transmit & HTRANS = IDLE & HREADY & HRESP = OK &

HGRANT : idle;
HREADY & HRESP = SPLIT & HGRANT & !lasterror : mask;
master state = mask & HSPLIT = master : idle;
lasterror : master state;
!HREADY : master state;
1 : master state;

esac;
next (lasterror) :=
case
HRESP = RETRY : 1;
HRESP = SPLIT : 1;
1 : 0;

esac;
HMASTER :=
case
preferred = master : master;
preferred = default : default;

esac;
HGRANT :=
case
preferred = master : 1;
1 : 0;

esac;

186

We have used the NuSMV [1] model checker to verify Computational Tree Logic

(CTL) [25] properties on the networking router MPSoC design. We specified AMBA AHB

masters, slaves, and the arbiter in NuSMV code. Algorithm 9.1 shows the NuSMV

specification for an AMBA AHB arbiter managing a single master and slave. This

model is sufficient to verify the correctness of the arbiter, as in a fully connected

bus matrix each bus connects a single master to a single slave. Point arbitration is

managed at the slave side; whenever the slave is busy serving a transaction, it signals

this fact by setting the HREADY signal to low (other implementations are also possible).

In Section 8.3.1 we have described an ambiguity in the AMBA AHB specification,

that may arise when a slave splits a a master, and requests retransmission by setting

the HRESP = RETRY response. In a fully connected bus matrix, each AMBA AHB bus

connects a single master and slave, and the slave has little reason to split the master.

Nevertheless, we use the simple fix of disallowing the slave to split a master and set

the HRESP signal to RETRY in the same cycle to avoid possible deadlocks.

To show that no deadlocks can occur in the model, we have shown that the error

state is unreachable in masters and slaves by checking the following CTL formulas

(where x refers to the index of masters, y is the index of slaves):

AG (MASTERx.state != error), AG (SLAVEy.state != error).

We have specified rules to enforce that whenever a master is split, it will be even-

tually unsplit in order to avoid livelocks. We have verified this property using the

following CTL formulas:

AG ((MASK MASTERx) -> AF (!MASK MASTERx)).

Finally, we checked whether starvations are possible by checking the following

formulas:

SPEC AG (MASTERx.state = busreq -> AF HGRANTx),

SPEC AG (MASTERx.state = busreq -> AF MASTERx.state = write).

187

9.3.1 Experiments

We have run experiments using the NuSMV tool on an Intel Core i7 processor running

at 4GHz with 6GB triple-channel DDR3 RAM. For the arbiter connecting a single

master and slave, the verification time took less than a second, with 6700KB mem-

ory consumption. For 2 masters, the analysis took less than a second with 11700K

memory consumption. For 3 masters the analysis took 28 seconds with 92080KB

memory consumption. Since in this study we consider fully connected bus matrices

only, scalability issues do not arise, as each master is connected to each slave by a

dedicated AMBA AHB bus.

We have found that starvations are possible in general when high-priority masters

continually request access to slaves, and therefore lower-priority masters do not get

served. Therefore, we need to consider the actual dependencies in the model, and

perform real-time analysis to ensure that this condition does not occur. We need to

consider the actual communication between tasks in the MPSoC design, and consider

whether the starvation may occur in the actual MPSoC design.

This problem, however, cannot be adequately addressed at the cycle accurate ab-

straction due to the long computation times, that would lead to state space explosion.

There is no theoretical limitation on performing real-time verification at the cycle ac-

curate abstraction; the limitation is present simply due to the state space explosion

present at low-level abstractions.

In the next section we describe how we obtained worst case performance estimates

on the networking router case study, and how we used the results in the final stage for

real-time verification using TA in Section 9.5. We address the problem of starvation

in Section 9.5.

188

9.4 Formal Performance Estimation by Discrete Event

Simulations

Section 9.2 demonstrates how MPSoC designs based on fully connected AMBA AHB bus

matrix interconnects can be modeled using Alderis. This approach allows to utilizes

the DES-based formal performance estimation method for the performance analysis

of MPSoC designs based on fully connected AMBA AHB bus matrix interconnects.

We used the open-source Dream tool – that implements the DES-based simulation-

guided performance estimation method – for the performance estimation of the net-

working router MPSoC design. Table 9.1 shows the parameters used for the model

shown in Figure 9.4. We have obtained the deadlines from application requirements,

and the execution time estimates by using fast and accurate system-level simulation

at the CCATB abstraction [84].

Figure 9.5 illustrates the DES-based performance estimation method. The depen-

dencies imply a partial ordering on the execution order of tasks, as well as the events

during the discrete event simulation. We distinguish three major types of events

in Figure 9.5; input events, denoted as “i”, output events denoted as “o” and start

events denoted as “s”. Each event is followed by a number to indicate which task is

responsible for the event. This is simply a syntactic short-hand to keep the nodes in

the tree small. Numberings for tasks are given in the last column of Table 9.1.

As seen from Figure 9.5, the application starts with tasks IF1, IF2, and IF3

receiving input events. The second node shows that the three tasks are scheduled

(started) by the scheduler for execution. Since IF2 has the smallest execution time

between IF1, IF2, and IF3, therefore IF2 will be the first to finish its execution.

When IF2 finishes its execution, it generates an output event, that is broadcasted to

both PktRx3 and PktRx4.

The first non-deterministic branch occurs after Pkt fwd (numbered 10) is scheduled

189

Task CPU Priority WCET BCET Deadline Numbering

IF1 Slave IF1 1 200 - 201 1
IF2 Slave IF2 2 100 - 101 2
IF3 Slave IF3 3 400 - 401 3
IF4 Slave IF4 4 200 - 201 22
IF5 Slave IF5 5 200 - 201 14
IF6 Slave IF6 6 400 - 401 23
Mem1 Mem 1 7 100 - 201 16
Mem2 Mem1 1 8 100 - 201 13
Mem3 Mem 2 9 100 - 101 15

PktRx1/2 CPU 1 10 1442 770 1443 4
Chk CPU 1 11 450 220 451 8

HdrCal CPU 1 12 2400 1340 2401 12
PktRx3 CPU 2 a 13 1530 1400 1531 5
PktRx4 CPU 2 b 14 670 590 671 6
Pkt fwd CPU 2 b 15 600 200 601 10
Proc1 CPU 2 a 16 2800 2400 2801 9
Cnfg PostProc 17 1600 1300 1601 18
Assm PostProc 18 800 600 2401 17

Recalc 1 PostProc 19 3000 2000 3801 20
PktRx5/6 Enc 20 2100 1100 2101 7

Enc Enc 21 4900 3800 4901 11
Recalc 2 PostProc 22 1750 1500 6381 19
Proc2 PostProc 23 5600 4800 5601 21

Table 9.1: Parameters for the Networking Router MPSoC Design Shown in Figure 9.4

for execution. The earliest time when Pkt fwd may finish its execution is at time 890,

as can be computed by adding the best case execution times of itself and its sources

IF2, PktRx4 (100+590+200=890). We can also compute that Pkt fwd will finish its

execution by time 1370 (100+670+600=1370). For task PktRx1/2 we can similarly

obtain that it will finish its execution between 970 and 1642. Therefore, the execution

intervals of Pkt fwd and PktRx1/2 overlap, and we need to consider two cases; when

Pkt fwd finishes first, and when PktRx1/2 finishes first. It is also possible that the

two tasks finish simultaneously, in which case race conditions may be considered,

resulting in the same two options. Total orderings become important when multiple

tasks are mapped to the same thread or processing unit. For example, both Mem1 and

190

Figure 9.5: A Partial View of the Event Order Tree for the Example Shown in Fig-
ure 9.4 using the Parameters in Table 9.1

Mem2 denote memory accesses in the same memory module. Likewise, tasks Cnfg,

Recalc 1, Recalc 2 and Proc2 are all mapped to the same thread, and therefore

it is important to consider the order in which they may be scheduled for execution.

Figure 9.5 only illustrates the top of the tree, and the gray rectangles refer to subtrees

of the corresponding nodes.

The size of the event order tree grows very fast even for moderate-size examples,

and pre-computing the tree is not possible due to resource constraints. Rather, the

proposed method builds the event order tree on-the-fly, that captures all the possi-

ble total orderings of events. Branches are discovered during simulation-time, and

then subsequently enumerated. Algorithm 6.1 describes how the event order tree is

constructed on-the-fly.

By enumerating the event order tree, one can obtain the worst case bound on the

overall performance of the model. To enumerate the tree, the discrete event simulation

step described in 6.2 are performed repeatedly, where the execution time of tasks is

191

continuously updated to capture all possible permutations of execution times. Since

the analysis is based on repeated simulations, we refer to this approach as “simulation-

guided model checking”. The event order tree captures all permutations of events,

and is therefore exhaustive; it does not produce false positives. On the other hand,

the method is built on the assumption that discrete event simulations using limited

horizon are sufficient, after which the system returns to an initial idle state, which

may not be the case for all types of real-time systems. For a description of the

formal performance estimation method and proofs on the validity of the performance

estimation method please see Section 6.2.3.

The DES-based method is more accurate for performance estimation than static

analysis methods, as it captures dynamic effects such as congestions on the bus, and

race conditions. The advantage of the DES-based method compared to ad-hoc sim-

ulations is the increased state space coverage. Compared to pure model checking

methods, the main advantage is that it does not run out of memory on large-scale

examples, as it is based on fast iterative simulations, and is therefore Central Process-

ing Unit (CPU)-bound. Moreover, most model checkers are tailored to answer yes/no

questions, but the DES-based method can directly obtain the worst case bound on

the end-to-end computations.

9.4.1 Experiments

The open-source Dream tool computed the worst case end-to-end performance of

the networking MPSoC design modeled as shown in Figure 9.4 in 590 seconds on an

Intel Core i7 920 processor running at 4GHz using 6GB triple channel memory, with

only 776KB memory consumption. The implementation of the DES-based method

was not optimized to take advantage of the multi-core architecture, and therefore

executed on a single thread. The DES-based performance estimation method is easy

to parallelize as it consists of repetitive simulations, and we are considering a multi-

192

core implementation in the future.

The overall end-to-end performance estimate is 17780 cycles. We use this infor-

mation as a bound on the end-to-end performance of the networking router MPSoC

design. Each cycle in the model represents 5ns. The lowest period of the timers

that still does not violate the end-to-end bound is therefore 17780×5
103 = 88.9µs. This

means that the highest possible frequency for the sampling is ∼11.248KHz. Note

that with each sampling the networking router MPSoC processes several packets, and

therefore provides reasonable performance. The analysis is exhaustive, and therefore

the bound is tight. In the next section we perform real-time verification on the model

to prove that the performance estimates hold, and that no starvation occurs in the

MPSoC design.

9.5 Real-time Verification using Timed Automata

Real-time verification is optional in most cases, as the performance estimation method

is based on an exhaustive state space search, and is therefore a model checking method

itself. There are three cases when the use of the extra verification step is justified.

First, the DES-based performance estimation method does not capture timed states to

improve scalability, but rather utilizes a limited horizon for the simulations. Although

this approach is sufficient in most cases where the simulation periodically returns to

the initial state, it cannot be applied to all models in general. For example, obtaining

the required time horizon for simulating a pipeline architecture may be error-prone.

In other words, while the DES-based method does not produce false positives, it relies

on the assumption that a limited horizon is sufficient for the analysis. In cases where

this condition cannot be proven, the use of the additional verification step is required.

Second, for some complex MPSoC designs the performance estimation method might

not terminate due to the state space explosion problem. TA-based model checkers in

193

some cases (but not always) achieve better scalability. In this case, the use of the

real-time verification method is justified, as it might prove the validity of the worst

case performance estimate.

Third, the TA-based model checker can be utilized to prove properties on the

design that could not be carried out at the cycle-accurate level due to the state space

explosion problem. Our FSM-based analysis described in Section 9.3 has shown that

starvations may be present in the design due to the fixed-priority point arbitration

algorithm utilized in the slaves. By capturing the MPSoC design shown in Figure 9.4 as

TA, we can prove that no livelocks and starvations are present in the model. Note that

real-time properties such as execution times may influence starvations, and therefore

have to be considered for the analysis.

In this section we utilize the TA model checking due to the third condition; it is

hard to prove that no deadlocks and livelocks are present using the DES-based method.

During DES, we can easily identify situations where a task did not execute at all, but

it is hard to identify whether a blocking occurs simply due to waiting for resources,

or an actual deadlock or livelock. The TA-based method removes any doubt, and the

models can be automatically generated from Dream.

Figure 9.6 shows the partial TA representation in the Uppaal tool for the net-

working router MPSoC design shown in Figure 9.4. The locations denoted with U are

urgent locations, and C denotes committed locations [12], both of which imply that

time cannot pass in that location, and the outgoing transitions needs to be taken

immediately upon entering the location. Tasks have two clocks, ce and cd. Tasks,

channels, timers, and schedulers compose together as a network of TA, providing an

abstract model for scheduling. The translation from Alderis models to the TA rep-

resentation is described in detail in Chapter 5 and Chapter 7. The translation process

itself is based on refinement, Dream generates a TA model for each task, FIFO buffer,

and timer in the Alderis models using a template. Scheduling policies are specified

194

Figure 9.6: Partial Timed Automata Model of the Networking Router MPSoC Design
Shown in Figure 9.4 in Uppaal

as automata, where transitions may trigger the execution of tasks.

The translation is implemented in the open-source Dream tool and is fully auto-

mated. Dream generates TA representations for the Uppaal and Verimag IF model

checkers. In this section we arbitrarily focus on Uppaal, as both tools are TA model

checkers. We have verified that no task can violate its deadline by checking the

following (by now perhaps familiar) Uppaal macro:

A[] not deadlock

Since the TA are created in such a way to deadlock when a deadline is violated, this

analysis proves the real-time schedulability of the system. Note that this result does

not contradict the FSM-based analysis. The FSM-based analysis shows that deadlocks

195

may be present in general in MPSoC designs utilizing AMBA AHB with fixed-priority

point arbitration. When we consider the actual communication in the MPSoC design

by considering dependencies and when components request access to resources in the

TA model, we can prove that no deadlock are present in the actual MPSoC design. In

short, deadlocks may be present in general, but are not present in the router case

study used in this chapter.

9.5.1 Experiments

We have run experiments using the Uppaal model checker on an Intel Core i7 920

processor running at 4GHz using 6GB triple channel memory. The verification time

took less than a second for the design illustrated in Figure 9.6, with 9140KB memory

consumption. We have rounded up the period of the timer to 18000 cycles for sim-

plicity, and we were able to prove the end-to-end execution time of 17780 cycles. The

real-time verification shows that any frequency that is lower than the correspond-

ing 11.1KHz is guaranteed not to violate the end-to-end deadline, or the individual

deadlines of tasks.

9.6 Comparing the Results of the Analysis Methods

Figure 9.7 illustrates the analysis time and memory consumption used for the analysis

of the networking router case study. During the functional verification phase, we

considered a cycle-accurate model of the AMBA AHB bus, and found that deadlocks

may be present due to the fixed-priority arbitration. The analysis time took less

than one second for buses containing a single master and slave, however we observed

increased analysis time and memory consumption as more and more masters were

added to the bus. This was mainly the result of the more complex arbitration policy

needed. Since in fully connected bus matrices each master is connected to each slave,

196

Figure 9.7: Analysis Time and Memory Consumption for the Networking Router Case
Study

analysis scalability was not an issue.

For performance estimation, we relied on the DES-based simulation-guided model

checking method. Analysis time was higher, while memory consumption was lower.

Generally, we find that memory-bound model checkers have better performance than

the CPU-bound method if the example is actually small enough to fit in the main

memory. Once the model size increases beyond the main memory size, memory-

bound model checkers are not useful in practice, as performance degrades significantly,

and no partial results are given. For this example, we find that the model is small

enough to fit in memory, and the various optimizations result in improved performance

compared to the DES-based method, although both methods are relatively fast.

For real-time verification, the Uppaal tool shows impressive performance by prov-

ing deadlock-freedom, as well as proving the real-time schedulability of the router

design. Results are similar to the NuSMV results, even though the problem ana-

lyzed is different: Uppaal considers the interactions between tasks – similarly to the

DES-based method – on a transaction-level abstraction. Here we see the advantage of

using multiple abstractions for the analysis; performing the same analysis using the

NuSMV tool at the cycle-accurate level would result in serious performance penalty,

and possibly even state space explosion. Our results show the practical applicability

of the Carta framework for the cross-abstraction analysis of MPSoC designs.

197

Chapter 10

Simulation-guided Model Checking: The Dream
framework

In this chapter we describe the Distributed Real-time Embedded Analysis Method

(Dream) (http://dre.sourceforge.net) for the model-based analysis of Distributed

Real-time Embedded (DRE) systems. The Dream project focuses on the practical

application of formal analysis methods to automate the verification, development,

configuration, and integration of Asynchronous Event-driven Distributed Real-time

Embedded (AEDRE) systems. The open-source Dream tool is a prototype imple-

mentation of the analysis methods described in Chapter 5, Chapter 6 and Chapter 7.

This chapter describes the design of the open-source Dream tool.

Dream is a model-based analysis method and tool for the real-time verification

and performance estimation of DRE systems. The Dream design flow utilizes the

concept of Domain-specific Modeling Languages (DSMLs) to capture simulations and

model checking in a formal framework. Dream models can be specified using the

Analysis Language for Distributed, Embedded, and Real-time Systems (Alderis)

DSML introduced in Section 4.1. Alderis models can be constructed using the

Generic Modeling Environment (GME) tool [61], but Dream accepts Alderis models

in Extensible Markup Language (XML) format, which is simply a textual representa-

tion of the Alderis abstract syntax presented in Section 4.1.1. Alderis can express

both AEDRE and Time-triggered Distributed Real-time Embedded (TTDRE) systems

using the DRE Semantic Domain, either as Timed Automata (TA) as defined in

Section 4.3, or as a Discrete Event (DE) system as defined in Section 4.4.

The major goal behind the development of Dream is to help designers bridge the

gap between their domain of knowledge, and formal model checking, and to promote

198

http://dre.sourceforge.net

the practical application of formal methods to DRE systems’ development. Dream,

therefore, combines methods from modeling, simulations, model checking, and tool

integration to facilitate this model-driven analysis flow.

10.1 Functionality Provided by Dream

This section discusses the methods implemented in the open-source Dream tool.

10.1.1 Random Simulations

Dream implements a DE simulator with formally defined execution semantics using

the Alderis Model of Computation (MoC) defined as a DE system in Section 4.4. DE

simulations are used for random testing, and also drive the simulation-guided model

checking algorithm for real-time verification and performance estimation.

The Discrete Event Simulation (DES) of a large-scale DRE model consisting of

∼100 tasks takes around 20ms on an Intel Core i7 920 processor running at 4GHz

with 6GB three-channel memory. Therefore, the design space exploration is orders of

magnitude faster than traditional simulation-based approaches.

10.1.2 Real-time Verification of Non-preemptive DRE Systems by Timed

Automata

Dream implements the real-time model checking method described in Section 5

based on the TA MoC using the Uppaal [26] and Verimag IF [15] tools. Alderis

models are automatically translated to an equivalent TA representation based on

the DRE Semantic Domain introduced in Section 4.3. The models for the tasks

and scheduling algorithms are automatically generated from Dream allowing rapid

evaluation of system designs.

199

The distributed multi-threaded fixed-priority scheduler is modeled as TA, that

specifies priorities between transitions triggering the execution of the TA. When

multiple tasks are enabled, the guards/priorities on transitions control which task

will be allowed to access resources. This provides a formal model that captures the

event-driven triggering commonly used in AEDRE systems, and provides an abstract

model of execution.

Dream can generate TA models for both Uppaal [26] and the Verimag IF toolset

[15]. The TA models represent the DRE system models specified using Alderis in a

formal framework. The generated Uppaal and IF models express the same behavior,

but are not directly comparable since the semantics for specifying clock constraints,

broadcast event passing, buffering, and the property checking are implemented differ-

ently in Uppaal and IF. Uppaal and IF are both timed automata model checkers.

While the semantics of TA models differ slightly in Uppaal and IF, they both are

capable model checker tools, and can express the DRE Semantic Domain for prac-

tical real-time analysis.

10.1.3 Performance Estimation and Real-time Verification by DES

Dream implements the performance estimation method based on DES introduced in

Section 6. Dream implements a DE scheduler, and can perform symbolic simulations

of Alderis models using the DRE Semantic Domain specified as a DE system, as

defined in Section 4.4.

Dream models explicitly capture the event-flow and non-deterministic commu-

nication effects, such as varying delays etc. for dynamic performance evaluation.

Dream does not store timed states for the analysis, like TA model checking methods,

as this is a significant contributor to memory consumption in model checking tools.

By utilizing Algorithm 6.1, Dream builds the event order tree introduced in Sec-

tion 6.2.1 on-the-fly, implementing a Central Processing Unit (CPU)-bound method

200

for performance estimation and real-time verification.

Note that this approach represents real-time properties in continuous time. We

do not address the termination problem at this stage of development, as we do not

try to identify previously visited timed states, but use a constant horizon as a time

limit for the analysis. Although there exist model checking methods, such as TA

model checking, that do not have this limitation in theory, in practice all model

checking methods suffer from the termination problem due to the state space explosion

problem. The proposed method has minimal memory requirements, can provide

partial results if the model is too large for exhaustive analysis, provides a way to

measure coverage, and can provide counter-examples when properties are violated.

Our results show that this approach can reach better coverage for the performance

estimation of large-scale DRE system designs than alternative methods.

The DES-based performance estimation method is applicable only to non-preemptive

systems due to decidability issues discussed in detail in 7.1. This means that the ex-

haustive verification and performance estimation can be ensured only in the case of

non-preemptive systems. However, the DE scheduler can certainly perform symbolic

simulations on preemptive models. A conservative approximation method for the per-

formance estimation and real-time verification of Alderis models may be feasible in

theory, given that such an approximation was found for TA as shown in Chapter 7.

However, this dissertation and Dream does not address the formal performance es-

timation problem based on DES for preemptive systems.

10.1.4 Real-time Verification of Preemptive DRE Systems by Timed

Automata

Stopwatch Automata (SA) [77] were proposed as a MoC that can express preemptable

tasks in asynchronous event-driven systems. It was shown that reachability analysis

on the composition of SA as task graphs (integration graphs) is undecidable [55, 59]

201

in general.

Dream implements the real-time model checking method for Preemptive Event-

driven Asynchronous Real-time Systems with Execution Intervals (PEARSE) described

in Section 7. Alderis models are automatically translated to TA models using the

Task Timed Automaton (TTA) introduced in Section 7.2. The resulting TA model is

an approximation of the SA model, and can be utilized for real-time model checking

using the Uppaal and Verimag IF tools.

To the best of our knowledge, the model checking method implemented using

Dream + Uppaal + the Verimag IF toolset is the first practical implementation for

the real-time model checking of Preemptive Event-driven Asynchronous Real-time

Systems with Execution Intervals (PEARSE). Alternative methods based on Stop-

watch Automata (SA) and Hybrid Automata (HA) model checkers are not guaranteed

to terminate, and have worse scalability than the proposed method, as discussed in

Section 2.2.3.

10.1.5 Task Mapping Problem on a Distributed Platform by Genetic

Algorithms

DREAM implements a method to obtain the mapping of tasks to threads in the

Alderis model such that real-time constraints are satisfied. The task mapping prob-

lem is an extension to the job shop scheduling problem, that is NP-complete [14]. In

this section we propose a solution for the task mapping problem using DES directed

by a genetic algorithm, shown in Algorithm 10.1. Algorithm 10.1 is a pseudo-code

representation of the task mapping method implemented in Dream.

The major advantage of Algorithm 10.1 is that it is scalable for large-scale systems

as well, and performs well for finding task mappings that satisfy real-time constraints.

Obtaining a feasible mapping for a model of this size is in the order of seconds.

The disadvantage of the approach is that it builds on random algorithms, therefore

202

Algorithm 10.1 Heuristic for the Task Mapping Problem

1: we suggest the initial values s = 3×n
8
, p1 = 30%, p2 = 10%, p3 = 65%

2: generate n ∈ N design alternatives (called solutions) by randomly mapping all
tasks to threads using thread(tk)

3: run a single simulation for all solutions, where the execution time for tasks is
picked randomly from the execution interval

4: for i = 0; i < NUMBER OF SIMULATIONS; ++i do
5: calculate a fitness value for all solutions by counting how many tasks have

missed their deadlines during the simulation, and weigh it by how much they
have missed it

6: sort the n solutions in decreasing order based on the fitness value computed in
the previous step

7: if there is a solution that satisfies constraints then
8: stop and run model checking on that task mapping solution
9: end if

10: put the first s solutions in set A and the second s solutions in set B
11: // Single parent mutation in set A
12: for all solutions in set A do
13: for all task tk in the solution do
14: randomly modify thread(tk) with p1 probability
15: end for
16: end for
17: // Two parent mutation in set B
18: randomly pick two solutions x and y from set B
19: for all x and y pairs ∈ B do
20: for all task tk do
21: if thread(tk) in solution x = thread(tk) in solution y then
22: randomly modify thread(tk) in both solutions with p2 probability
23: else
24: randomly modify thread(tk) in both solutions with p3 probability
25: end if
26: randomly regenerate solutions that are not in A or B
27: end for
28: end for
29: end for

the worst case behavior of the model is not considered during the analysis. Therefore,

the heuristic described in Algorithm 10.1 provides only the first step in the proposed

methodology for the task mapping problem. In the second step, we designers should

perform a formal real-time analysis on the most promising design alternatives utilizing

the methods described earlier in this section.

203

Figure 10.1: The Modular Dream Design

10.2 Design and Implementation

The driving force behind the design of the Dream tool is to create a tool which

captures high-level system design in a formal setting. Tasks are also captured at a

rather high level abstraction, using only 4 states: (idle, wait, run, and preempted). The

main reason for the aggressive abstraction is to allow the real-time verification of a

large number of tasks on heterogeneous platforms. Task computations are omitted for

both the TA-based real-time verification and the DES-based performance estimation,

but the DES-based method can be extended to capture simple computations, even

during the exhaustive simulation-based verification.

The design of Dream is split up into three major modules; Core implements the

discrete event scheduler on a preemptive distributed platform, Algorithm implements

various algorithms for verification and optimization that build on the Core, and Logic

implements the Dream UI and the interpreters which create TA models from the

204

internal representation in the Core.

The Core implements systems with varying complexity. The Task class implements

a real-time task which models computations in the system. Tasks may have best and

worst case execution times, and sub-priorities for non-preemptive scheduling. Tasks

can be assigned to threads, which are a list of tasks with a priority for preemptive

scheduling. A task’s priority is the priority of the thread – tasks that are assigned

to the same thread have the same priorities. A processing node is represented as

a fixed priority scheduler. A scheduler manages a thread-pool of (possibly) several

threads (with distinct priorities). Higher priority threads are favored against lower

priority threads, whenever a high priority thread becomes enabled it preempts any

lower priority threads that are running. Dream can simulate hyper-threaded systems

as well where several threads may run concurrently on the same execution node at

the same time. The System class represents a distributed system consisting of several

processing nodes and provides a C++ API for the other two modules. The C++ API

uses the visitor pattern to get access to the Core.

The Algorithm module uses this C++ API to obtain direct pointers to the tasks

using the visitor pattern. Using the pointers the algorithm can optimize parameters

by running several simulations, and specify whether best, worst, or random execution

times are assumed for each task. The Solution class maintains the connection to the

Core using the pointers and it can compute a fitness function for the current system

model. If the system is schedulable 0 is returned, otherwise an error value is computed

from the number of tasks that have missed their deadlines. The GeneticOptimize

class uses genetic algorithms to optimize the scheduling by generating several possi-

ble priority assignments (using the Solution class). 2-parent and 1-parent mutations

are used on the best solutions to obtain even better ones, while the worst candi-

dates are replaced by random solutions. The ModelCheck class also builds on the

Solution class. It implements simulation-based model checking for systems using

205

non-preemptive scheduling. The method builds on the Core which updates the states

and clocks for the tasks for each event and checks whether a task’s execution time is

longer than its deadline.

The Logic module implements the text-based menu from which Dream services

can be accessed. The Uppaal and IF interpreters generate TA models directly from

the Core. An XML parser is used to read models into Dream.

Dream is implemented in ANSI C++. The source code compiles using gcc for

Linux as well as Visual Studio 7.1 and 8.0 compilers, and should be easy to port to

other platforms as well. STL data structures are used within Dream for the sake of

simplicity. The implementation is not particularly optimized but is relatively easy to

read. All classes and methods are documented and available online. The website of

the open-source Dream tool is available at http://dre.sourceforge.net.

206

http://dre.sourceforge.net

Chapter 11

Concluding Remarks and Future Work

Technological advances enabled an “information revolution” in the past decades,

changing the way we search for information, solve problems, travel, communicate

and interact with each other. Embedded systems are computation platforms that in-

creasingly interact with the physical world, defining the concept of Cyber-physical

Systems (CPS). CPS are at the forefront of the information revolution, and have the

potential to dwarf accomplishments in the field of computer science to date.

Distributed Real-time Embedded (DRE) systems provide the platform for the im-

plementation of CPS, that increasingly run in open environments, in less predictable

conditions than previous generations of real-time and embedded systems (such as

micro-controllers) that are specialized for specific application domains (such as traf-

fic control). DRE systems provide a highly adaptive and flexible infrastructure for

reusable resource management services, thereby providing a platform for flexible and

adaptive CPS.

The use of DRE systems is pervasive, ranging from small-scale Multi-processor

System-on-Chip (MPSoC) designs operating in resource-constrained environments such

as cell phone platforms, medical devices and sensor networks all the way to large-scale

software-intensive systems of systems used in avionics, ship computing environments,

and in Supervisory Control and Data Acquisition (SCADA) systems managing regional

power grids.

Section 11.1 discusses the challenges addressed by this dissertation, Section 11.2

summarizes key contributions, and Section 11.3 presents future directions for research.

207

11.1 Challenges in the Design of Distributed Real-time

Embedded Systems

Traditional mission-critical real-time systems extend the concept of the time-triggered

architecture [58] to distributed and embedded systems. We refer to this class of

systems as Time-triggered Distributed Real-time Embedded (TTDRE) systems. By

separating the invocation of tasks from their activation, TTDRE systems achieve de-

terministic time behavior; by synchronizing the start of execution of tasks with the

global clock designers achieve a high degree of predictability, and are able to express

which tasks are allowed to execute at any point in time.

The vast majority of DRE systems, however, fall in the category of Asynchronous

Event-driven Distributed Real-time Embedded (AEDRE) systems. AEDRE systems

are based on a reactive, event-driven communication paradigm, where the execution

of tasks is triggered asynchronously, depending on when they are invoked by external

events, or other tasks. Event-driven systems provide a natural abstraction for DRE

systems, as they closely resemble biological systems; whenever external events occur,

the reaction follows as soon as possible.

As DRE systems are increasingly complex and diverse, and the question whether

AEDRE or TTDRE systems should be used depends on the application domain, and

key design constraints. In most heterogeneous DRE systems, AEDRE and TTDRE

systems are used simultaneously; critical functionality may be provided by time-

triggered components, while non-critical functionality may be provided by event-

driven components.

The composition of time- and event-driven systems is a significant challenge that

may have significant impact on the design of modern DRE systems, providing designers

with the option to design systems that have the advantages of both AEDRE and TTDRE

systems, thus leading to greater design freedom and flexibility. Developing analysis

208

methods for AEDRE systems, however, remains a key challenge.

11.2 Key Technical Contributions of this Dissertation

This dissertation proposed a model-based design methodology to address three ma-

jor challenges in the formal analysis of DRE systems: (1) functional verification – to

ensure that the system will not be trapped in a deadlock or livelock state, (2) perfor-

mance estimation – in order to obtain tight bounds on the worst case performance of

the DRE design, and (3) verification of real-time properties – to prove whether indi-

vidual deadlines for tasks and performance estimates hold for the DRE design. The

novelty of our approach lies in (1) combining formal methods and symbolic simula-

tions for the system-level evaluation of DRE designs early in the design flow, and (2)

utilizing multiple abstractions to trade off analysis accuracy and scalability. The key

technical contributions of this dissertation are as follows:

• Definition of a formal semantic domain for AEDRE systems: we de-

scribed the DRE Semantic Domain – a formal executable domain for the

analysis of DRE systems. We reviewed common methods to specify semantics,

then described our approach for the modeling of DRE systems by meta-modeling,

and introduced the Analysis Language for Distributed, Embedded, and Real-

time Systems (Alderis) Domain-specific Modeling Language (DSML).

• A model checking method for the real-time verification of non-pre-

emptive AEDRE systems by Timed Automata (TA): we specified TA models

for the compositional analysis of DRE systems. We described the refinement-

based transformation process that allows the analysis of Alderis models by

TA model checking methods.

• A performance estimation method for AEDRE systems using Discrete

Event Simulations (DES): we described a novel DES-based performance

209

estimation method for DRE systems. The DES-based method is applicable to

large-scale DRE systems as it is based on repetitive simulations of the model,

and therefore does not suffer from memory consumption limits. Moreover, it can

provide partial results in case the models are too large for exhaustive analysis.

• A conservative approximation method for the verification of preemp-

tive AEDRE systems by TA: Preemptable tasks can be expressed using

Stopwatch Automata (SA) [77]. The reachability problem on the composition

of SA as a task graph is undecidable in general, since it can be mapped to the

halting problem [55]. The schedulability of preemptive multi-processor systems

is undecidable using TA in the generic case [59], as Timed Automata (TA) can-

not directly model stopwatches. Therefore, model checking Preemptive Event-

driven Asynchronous Real-time Systems with Execution Intervals (PEARSE) is

a challenging problem that is undecidable in the generic case. This dissertation

presented a novel conservative approximation method for the practical model

checking of PEARSE. To the best of our knowledge, the proposed method is

the first decidable – and therefore practically applicable – method for the real-

time verification of AEDRE systems designed as Preemptive Event-driven Asyn-

chronous Real-time Systems with Execution Intervals (PEARSE).

Utilizing the key technical contributions of this dissertation, we applied the analysis

methods to the following problem domains:

• Cross-abstraction verification and performance estimation of MPSoCs:

While MPSoC designs themselves can be viewed as DRE systems, the com-

munication subsystem in MPSoC designs has a major impact on both design

and analysis. Unlike software-intensive AEDRE systems that communicate over

packet-switched networks, MPSoC designs often utilize complex bus matrix ar-

chitectures, where access to the bus is managed by an arbiter (or several ar-

210

biters). Bus protocols and arbitration policies have a major impact on key

design parameters such as throughput and delays, and present new challenges

for functional verification. In particular, deadlock-freedom and livelock-freedom

is not guaranteed by bus protocols, but is a key requirement for designers.

This dissertation introduced an approach for the combination of transaction-

level simulations and model checking for formal MPSoC performance estimation

and real-time analysis. We then extended the real-time analysis to bus matrix

MPSoC designs. This dissertation described how methods for the analysis of

AEDRE systems can be adapted to MPSoC designs utilizing fully connected bus

matrix interconnects, and how point arbitration policies can be expressed by

the non-preemptive scheduling of task graphs.

• The open-source Distributed Real-time Embedded Analysis Method (Dream)

framework for the simulation-guided verification and performance es-

timation of AEDRE systems: Dream is an open-source tool and method

for the model-based real-time verification and performance estimation of DRE

systems. It implements the key technical contributions of this dissertation;

(1) Timed Automata (TA)-based real-time verification of non-preemptive AE-

DRE systems using the Uppaal [26] and Verimag IF [15] model checkers, (2)

DES-based method for performance estimation, (3) conservative approxima-

tion method for the verification of PEARSE. Dream models may be speci-

fied using Alderis, a modeling language based on the DRE Semantic Do-

main. The Dream project focuses on the practical application of formal anal-

ysis methods to automate the verification, development, configuration, and

integration of AEDRE systems. Dream is available for download at http:

//dre.sourceforge.net.

211

http://dre.sourceforge.net
http://dre.sourceforge.net

11.3 Future Directions

The model-based design and early exploration of DRE systems is a challenging prob-

lem. This dissertation investigated the functional verification, real-time analysis and

performance estimation of AEDRE systems in detail. However, there remain signifi-

cant challenges to apply the results of this work to complex DRE system designs. The

work presented in this dissertation can be extended in the following directions:

• Hierarchical (compositional) approach to verification: we developed

methods for the analysis of preemptive and non-preemptive DRE systems. The

proposed methods are based on the DRE Semantic Domain, and allow hi-

erarchical verification by composing events. In most practical DRE systems,

preemptive and non-preemptive components are used simultaneously, and com-

ponents interact through a packet-switched network (in the case of large-scale

software-intensive DRE systems), or through an on-chip interconnect (in the

case of MPSoCs). Therefore, component interactions can be captured in a high-

level model, where components are represented as “black boxes”. The timing

of component interactions can then be captured and verified through interfaces,

that specify the time intervals when the component is sending/receiving events.

This approach would enable the real-time analysis of medium- to large-scale

DRE systems.

• Energy (and power) verification: The DRE Semantic Domain captures

the timed behavior of AEDRE systems. While the focus of this dissertation is

on real-time properties, the DRE Semantic Domain can also express energy

consumption at the task-level, including frequency scaling and dynamic voltage

scaling, as shown in our earlier work [68]. By annotating the analysis mod-

els with accurate power information, the model checker can compute energy

consumption over timed traces, and prove energy consumption properties. In

212

theory, both leakage and dynamic power could be captured in the proposed

framework. By directly building on our existing work on real-time analysis, a

task-level energy estimation approach is well within reach.

• Multi-core implementation of the DES-based real-time analysis me-

thod described in Chapter 6: The DES-based performance estimation and

real-time verification method is CPU-bound, unlike most model checking tech-

niques. The recent advance of multi-core processors provides a platform that

could significantly improve the performance of the proposed DES-based analysis

method.

Beside these immediate extensions, the following improvements seem within reach

with more extensive changes:

• Integration with real-time calculus: Modular Performance Analysis [33] is

an approach to characterize DRE systems merely by describing incoming and

outgoing event rates, message sizes, and execution times. Resources and the dis-

tributed execution platform is defined in similar terms, and Real-Time Calculus

is then used to compute upper and lower bounds of the system performance.

Integrating real-time calculus into the proposed model-based design framework

would provide better analysis scalability at the price of accuracy, giving design-

ers more options for tradeoffs.

• Real-time kernel based on the open-source Dream tool: Dream imple-

ments a fixed-priority real-time scheduler that is used for DES. Implementing

a lightweight kernel that utilizes the same model of computation would allow

designers to implement DRE software that can be automatically analyzed by

Dream.

• Run-time analysis: next-generation DRE systems need to be increasingly

adaptive to address challenges in CPSs. While static analysis provides an ap-

213

proach for the design of mission-critical systems, run-time analysis allows more

flexible DRE systems, and improved adaptability. Given the small footprint of

Dream, a method could be developed that considers heuristics based on DES

for dynamic run-time reconfiguration.

• Integration with Model Predictive Control/Supervisory Control:

Model Predictive Control [76] is a very effective method for the run-time control

of DRE systems. Since the DRE Semantic Domain is based on a Discrete

Event (DE)/TA formalism, combining the proposed method with supervisory

control of DE systems [103] would improve run-time adaptation and control in

mission-critical systems.

214

Bibliography

[1] A. Cimatti and E. Clarke and E. Giunchiglia and F. Giunchiglia and M. Pistore
and M. Roveri and R. Sebastiani and A. Tacchella. NuSMV 2: An OpenSource
Tool for Symbolic Model Checking. In Proceedings of the 14th International
Conference on Computer-Aided Verification (CAV), 2002.

[2] Y. Abdeddäım and O. Maler. Preemptive job-shop scheduling using stopwatch
automata. In Proceedings of International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 113–126, 2002.

[3] A. Agrawal, G. Karsai, and A. Ledeczi. An End-to-End Domain-Driven Devel-
opment Framework. In Proceedings of the 18th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Oct 2003.

[4] Alberto Sangiovanni-Vincentelli. Defining Platform-based Design. EEDesign of
EETimes, February 2002.

[5] R. Alur, C. Courcoubetis, and D. L. Dill. Model-Checking in Dense Real-time.
Information and Computation, 104(1):2–34, 1993.

[6] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[7] H. Amjad. Verification of AMBA Using a Combination of Model Checking and
Theorem Proving. Electronic Notes in Theoretical Computer Science, Proceed-
ings of the 5th International Workshop on Automated Verification of Critical
Systems (AVoCS 2005), 145:45–61, 2006.

[8] ARM. AMBA Specification rev 2.0, IHI-0011A, 1999.

[9] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, M. Kircher, and J. Parsons. The
Design and Performance of a Scalable ORB Architecture for CORBA Asyn-
chronous Messaging. In Proceedings of the Middleware 2000 Conference, 2000.

[10] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: An Integrated Electronic System De-
sign Environment. IEEE Computer, 36(4):45–52, 2003.

[11] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S. Neema.
Developing Applications using Model-driven Design Environments. IEEE Com-
puter, 39:33–40, 2006.

[12] J. Bengtsson and W. Yi. Timed Automata: Semantics, Algorithms and Tools.
Lecture Notes on Concurrency and Petri Nets, 3098:87–124, 2004.

215

[13] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. L. Guernic, and R. de Si-
mone. The Synchronous Languages 12 Years Later. Proceedings of the IEEE,
91:64–83, 2003.

[14] J. Blazewicz, J. Lenstra, and A. R. Kan. Scheduling subject to resource con-
straints: Classification and complexity. Discrete Applied Mathematics, pages
11–24, 1983.

[15] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF Toolset. Formal
Methods for the Design of Real-Time Systems, LNCS 3185, pages 237–267,
2004.

[16] V. A. Braberman and M. Felder. Verification of Real-Time Designs: Combining
Scheduling Theory with Automatic Formal Verification. Lecture Notes in Com-
puter Science, Proceedings of the joint 7th ESEC-FSE Conference, 1687:494–
510, 1999.

[17] S. Bradley, W. Henderson, and D. Kendall. Using Timed Automata for Re-
sponse Time Analysis of Distributed Real-Time Systems . In Proceedings of the
24th Workshop on Real-Time Programming (WRTP), pages 143–148, 1999.

[18] R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision
Diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[19] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture—A System of Patterns. Wiley & Sons, New
York, 1996.

[20] G. C. Buttazzo. Rate Monotonic vs. EDF: Judgment Day. Real-Time Systems,
29:5–26, January 2005.

[21] C. G. Cassandras. Discrete Event Systems, Modeling and Performance Analysis.
Irwin, 1993.

[22] F. Cassez and K. G. Larsen. The impressive power of stopwatches. In Proceed-
ings of the 11th International Conference on Concurrency Theory (CONCUR),
pages 138–152, 2000.

[23] P. Chauhan, E. M. Clarke, Y. Lu, and D. Wang. Verifying IP-Core based
System-On-Chip Designs. In Proceedings of IEEE ASIC SOC Conference, pages
27 – 31, 1999.

[24] A. Childs, J. Greenwald, G. Jung, M. Hoosier, and J. Hatcliff. CALM and Ca-
dena: Metamodeling for Component-Based Product-Line Development. IEEE
Computer, 39(2):42–50, 2006.

[25] E. Clarke and E. Emerson. Design and synthesis of synchronisation skeletons
using branching time temporal logic. Logic of Programs, Lecture Notes in Com-
puter Science, 131:52–71, 1981.

216

[26] A. David, G. Behrmann, K. G. Larsen, and W. Yi. A Tool Architecture for the
Next Generation of Uppaal. Technical report, Uppsala University, 2003.

[27] D. de Niz, G. Bhatia, and R. Rajkumar. Model-Based Development of Embed-
ded Systems: The SysWeaver Approach. In Proceedings of the 12th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), pages
231–242, 2006.

[28] M. Deshpande, D. C. Schmidt, C. O’Ryan, and D. Brunsch. Design and Per-
formance of Asynchronous Method Handling for CORBA. In Proceedings of
Distributed Objects and Applications (DOA), 2002.

[29] B. S. Doerr and D. C. Sharp. Freeing Product Line Architectures from Exe-
cution Dependencies. In Proceedings of the 11th Annual Software Technology
Conference, 1999.

[30] V. D’silva, S. Ramesh, and A. Sowmya. Synchronous protocol automata: a
framework for modelling and verification of SoC communication architectures.
In IEEE Proceedings of Computers and Digital Techniques, volume 152, pages
20–27, January 2005.

[31] J. Edmund M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT
Press, 1999.

[32] C. Ericsson, A. Wall, and W. Yi. Timed Automata as Task Models for Event-
Driven Systems. In Proceedings of Real-Time Computing Systems and Applica-
tions (RTSCA), pages 182–189, 1999.

[33] Ernesto Wandeler and Lothar Thiele and Marcel Verhoef and Paul Lieverse.
System architecture evaluation using modular performance analysis - a case
study. Software Tools for Technology Transfer (STTT), 8(6):649–667, Oct. 2006.

[34] P. H. Feiler, B. Lewis, and S. Vestal. The SAE AADL Standard: A Basis for
Model-Based Architecture-Driven Embedded Systems Engineering. In Work-
shop on Model-driven Embedded Systems, 2003.

[35] T. Gerdsmeier and R. Cardell-Oliver. Analysis of Scheduling Behaviour using
Generic Timed Automata. Electronic Notes in Theoretical Computer Science,
42:143–157, 2001.

[36] C. D. Gill, J. M. Gossett, D. Corman, J. P. Loyall, R. E. Schantz, M. Atighetchi,
and D. C. Schmidt. Integrated Adaptive QoS Management in Middleware: An
Empirical Case Study. Real-time Systems, 24(2–3):101–130, 2005.

[37] A. Goel and W. R. Lee. Formal Verification of an IBM CoreConnect Proces-
sor Local Bus Arbiter Core. In Proceedings of the 37th Design Automation
Conference (DAC), pages 196–200, 2000.

217

[38] A. Gokhale, K. Balasubramanian, J. Balasubramanian, A. S. Krishna, G. T.
Edwards, G. Deng, E. Turkay, J. Parsons, and D. C. Schmidt. Model Driven
Middleware: A New Paradigm for Deploying and Provisioning Distributed Real-
time and Embedded Applications. Science of Computer Programming: Special
Issue on Model Driven Architecture, 73:39–58, 2008.

[39] Z. Gu, S. Wang, S. Kodase, and K. G. Shin. An End-to-End Tool Chain for
Multi-View Modeling and Analysis of Avionics Mission Computing Software.
In Proceedings of Real-Time Systems Symposium (RTSS), pages 78–81, 2003.

[40] D. Harel and B. Rumpe. Meaningful Modeling: What’s the Semantics of “Se-
mantics”? IEEE Computer, 37(10):64–72, 2004.

[41] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The Design and Performance
of a Real-Time CORBA Event Service. In Proceedings of the 12th ACM SIG-
PLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 184–200, 1997.

[42] S. Hartmann and R. Kolisch. Experimental evaluation of state-of-the-art heuris-
tics for the resource-constrained project scheduling problem. European Journal
of Operations Research, pages 394–407, 2000.

[43] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A Model Checker
for Hybrid Systems. International Journal on Software Tools for Technology
Transfer (STTT), 1(1–2):110–122, 1997.

[44] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-triggered
language for embedded programming. Proceedings of the IEEE, 91:84–99, 2003.

[45] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? Journal of Computer and System Sciences, 57(1):94–
124, 1998.

[46] G. J. Holzmann. The SPIN model checker: Primer and reference manual.
Addison Wesley, 2004.

[47] J. E. Hopcroft, R. Motwani, Rotwani, and J. D. Ullman. Introduction to Au-
tomata Theory, Languages and Computability. Addison-Wesley Longman Pub-
lishing Co., Inc., 2000.

[48] IBM. 32-bit Processor Local Bus Architecture Specifications ver 2.9, SA-14-
2531-01, 2001.

[49] IEEE. VHDL (IEEE 1076 Standard), 2000.

[50] IEEE. Verilog (IEEE 1364 Standard), 2001.

[51] IEEE. SystemVerilog (IEEE 1800 Standard), 2005.

218

[52] ITU-T VCEG, ISO/IEC MPEG. ISO/IEC 14496-10 International Standard
(ITU-T Rec. H.264), 2003.

[53] JPEG Committee. ISO/IEC JTC1/SC29/WG1 N1855, JPEG 2000 Part I:
Final Draft International Standard (ISO/IEC FDIS15444-1). 8.2000.

[54] J.Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual, 1998.

[55] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Decidable Integration Graphs.
Information and Computation, 150(2):209–243, 1999.

[56] K.L. McMillan. The SMV system. Technical Report CMU-CS-92-131, Carnegie
Mellon University, 1992.

[57] M. H. Klein, T. Ralya, B. Pollak, and R. Obenza. A Practitioners’ Handbook for
Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems.
Kluwer Academic Publishers, 1993.

[58] H. Kopetz and G. Bauer. The Time-Triggered Architecture. Proceedings of the
IEEE, Special Issue on Modeling and Design of Embedded Software, Oct. 2001.

[59] P. Krcal, M. Stigge, and W. Yi. Multi-Processor Schedulability Analysis of
Preemptive Real-Time Tasks with Variable Execution Times. In Proceedings of
FORMATS, pages 274–289, 2007.

[60] K. Lahiri, A. Raghunathan, and S. Dey. System-Level Performance Analysis
for Designing On-Chip Communication Architectures. IEEE Transactions on
Computer Aided-Design of Integrated Circuits and Systems, 20:768–783, 2001.

[61] A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, and J. Sprinkle.
Composing Domain-Specific Design Environments. IEEE Computer, pages 44–
51, Nov 2001.

[62] E. A. Lee. The Problem with Threads. IEEE Computer, 39(5), May 2006.

[63] E. A. Lee, C. Hylands, J. Janneck, J. D. II, J. Liu, X. Liu, S. Neuendorf-
fer, S. S. M. Stewart, K. Vissers, and P. Whitaker. Overview of the Ptolemy
Project. Technical Report UCB/ERL M01/11, EECS Department, University
of California, Berkeley, 2001.

[64] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in
a Hard-Real-Time Environment. Journal of ACM, 20(1):46–61, January 1973.

[65] G. Madl and S. Abdelwahed. Model-based Analysis of Distributed Real-time
Embedded System Composition. In Proceedings of EMSOFT, 2005.

[66] G. Madl, S. Abdelwahed, and G. Karsai. Automatic Verification of Component-
Based Real-Time CORBA Applications. In Proceedings of the 25th IEEE In-
ternational Real-Time Systems Symposium (RTSS), pages 231–240, 2004.

219

[67] G. Madl, S. Abdelwahed, and D. C. Schmidt. Verifying Distributed Real-time
Properties of Embedded Systems via Graph Transformations and Model Check-
ing. Real-Time Systems, 33:77–100, Jul 2006.

[68] G. Madl and N. Dutt. Domain-specific Modeling of Power Aware Distributed
Real-time Embedded Systems. In Proceedings of the 6th Workshop on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS), 2006.

[69] G. Madl and N. Dutt. Tutorial for the Open-source Dream Tool. In CECS
Technical Report, 2006.

[70] G. Madl, N. Dutt, and S. Abdelwahed. Performance Estimation of Distributed
Real-time Embedded Systems by Discrete Event Simulations. In Proceedings of
EMSOFT, 2007.

[71] G. Madl, N. Dutt, and S. Abdelwahed. A Conservative Approximation Method
for the Verification of Preemptive Scheduling using Timed Automata. In Pro-
ceedings of the 15th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), pages 255–264, 2009.

[72] G. Madl, S. Pasricha, N. Dutt, and S. Abdelwahed. Cross-abstraction Func-
tional Verification and Performance Analysis of Chip Multiprocessor Designs.
IEEE Transactions on Industrial Informatics, Special Section on Real-time and
(Networked) Embedded Systems (submitted for publication), 2009.

[73] G. Madl, S. Pasricha, Q. Zhu, L. A. D. Bathen, and N. Dutt. Formal Perfor-
mance Evaluation of AMBA-based System-on-Chip Designs. In Proceedings of
EMSOFT, pages 311–320, 2006.

[74] G. Madl, S. Pasricha, Q. Zhu, L. A. D. Bathen, and N. Dutt. Combining
Transaction-level Simulations and Model Checking for MPSoC Verification and
Performance Evaluation. ACM Transactions on Design Automation of Elec-
tronic Systems (submitted for publication), 2009.

[75] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, 1992.

[76] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained
model predictive control: Stability and optimality. Automatica, 36(6):789–814,
June 2000.

[77] J. McManis and P. Varaiya. Suspension Automata: A Decidable Class of Hybrid
Automata. In Proceedings of the 6th International Conference on Computer
Aided Verification (CAV), pages 105–117, 1994.

[78] Object Management Group. CORBA Component Model, 2002.

[79] Object Management Group. Real-time CORBA Specification, OMG Document
formal/02-08-02 edition, Aug. 2002.

220

[80] OSCI. SystemC ver 2.1 (IEEE 1666 Standard), 2005.

[81] S. Pasricha. Transaction Level Modeling of SoC with SystemC 2.0. In Synopsys
User Group Conference (SNUG), May 2002.

[82] S. Pasricha and N. Dutt. On-chip Communication Architectures: System on
Chip Interconnect. Morgan Kauffman, 2008.

[83] S. Pasricha, N. Dutt, and M. Ben-Romdhane. BMSYN: Bus Matrix Commu-
nication Architecture Synthesis for MPSoC. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, (TCAD), 26(8):1454–1464,
2007.

[84] S. Pasricha, N. Dutt, and M. Ben-Romdhane. Fast Exploration of Bus-based
Communication Architectures at the CCATB Abstraction. ACM Transactions
on Embedded Computing Systems (TECS), 7(2):1–32, 2008.

[85] Rafik Henia and Arne Hamann and Marek Jersak and Razvan Racu and Kai
Richter and Rolf Ernst. System Level Performance Analysis - the SymTA/S
Approach. IEE Proceedings on Computers and Digital Techniques, 152:148–166,
2005.

[86] K. Richter, M. Jersak, and R. Ernst. A Formal Approach to MpSoC Perfor-
mance Verification. IEEE Computer, 36:60–67, April 2003.

[87] W. Roll. Towards Model-Based and CCM-Based Applications for Real-Time
Systems. In Proceedings of the Sixth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC), pages 75–82, 2003.

[88] A. Roychoudhury, T. Mitra, and S. R. Karri. Using Formal Techniques to Debug
the AMBA System-on-Chip Bus Protocol. In Design, Automation and Test in
Europe (DATE), pages 828–833, 2003.

[89] G. Rozenberg. Handbook of graph grammars and computing by graph transfor-
mation. World Scientific Publishing Co., Inc., 1997.

[90] D. C. Schmidt, A. Gokhale, T. H. Harrison, and G. Parulkar. A High-
Performance Endsystem Architecture for Real-Time CORBA. IEEE Commu-
nications Magazine, 14(2), 1997.

[91] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects, Volume
2. Wiley & Sons, 2000.

[92] J. Stankovic, R. Zhu, R. Poornalingham, C. Lu, Z. Yu, M. Humphrey, and
B. Ellis. VEST: An Aspect-based Composition Tool for Real-time Systems.
In Proceedings of the IEEE Real-time Applications Symposium (RTAS), pages
58–69, 2003.

221

[93] K. W. Susanto and T. F. Melham. An AMBA-ARM7 Formal Verification Plat-
form. In International Conference of Formal Engineering Methods (ICFEM),
pages 48–67, 2003.

[94] J. Sztipanovits and G. Karsai. Model-Integrated Computing. IEEE Computer,
pages 110–112, Apr. 1997.

[95] D. Taubman. High performance scalable image compression with EBCOT.
IEEE Transactions on Image Processing, 9:1158 – 1170, July 2000.

[96] K. Tindell and J. Clark. Holistic Schedulability Analysis for Distributed Hard
Real-Time Systems. Microprocessing and Microprogramming - Euromicro Jour-
nal (Special Issue on Parallel Embedded Real-Time Systems), 40:117–134, 1994.

[97] D. Varró, G. Varró, and A. Pataricza. Designing the automatic transformation
of visual languages. Science of Computer Programming, 44:205–227, 2002.

[98] Venkita Subramonian and Christopher Gill and César Sánchez and Henny B.
Sipma. Reusable Models for Timing and Liveness Analysis of Middleware for
Distributed Real-Time Embedded Systems. In Proceedings of EMSOFT, pages
252–261, 2006.

[99] S. Vestal. MetaH User’s Manual, Version 1.27. Technical report, Honeywell
Technology Center, 1998.

[100] S. Vestal. Formal Verification of the MetaH Executive Using Linear Hybrid
Automata. In Proceedings of the Sixth IEEE Real Time Technology and Appli-
cations Symposium, pages 134–144, 2000.

[101] J. R. W. Muller and W. Rosenstiel. SystemC Methodologies and Applications.
Kluwer Academic Publishers, 2003.

[102] S. Wang and K. Shin. Task Construction for Model-Based Design of Embedded
Control Software. IEEE Transactions on Software Engineering, 32(4):254–264,
2006.

[103] W. M. Wonham. Supervisory Control of Discrete-Event Systems. Monograph,
2008.

[104] T.-Y. Yen and W. Wolf. Performance Estimation for Real-Time Distributed
Embedded Systems. IEEE Transactions on Parallel and Distributed Systems,
9(11):1125–1136, 1998.

[105] Y. Zhao, J. Liu, and E. A. Lee. A Programming Model for Time-Synchronized
Distributed Real-Time Systems. In Proceedings of the 13th IEEE Real Time
and Embedded Technology and Applications Symposium (RTAS), pages 259–268,
2007.

222

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Acknowledgements
	Curriculum Vitae
	Abstract of the Dissertation

	Introduction
	Distributed Real-time Embedded Systems
	Time-triggered Distributed Real-time Embedded Systems
	Asynchronous Event-driven Distributed Real-time Embedded Systems
	Composing Time- and Event-driven Distributed Real-time Embedded Systems

	Model-based Analysis of Distributed Real-time Embedded Systems
	Key Contributions of this Dissertation

	Related Work
	Model-based Design and Analysis of Distributed Real-time Embedded Systems
	Real-time Analysis of Distributed Real-time Embedded Systems
	Classic Scheduling Theory
	Model Checking Non-preemptive Scheduling
	Model Checking Preemptive Scheduling

	Performance Analysis
	Static Performance Analysis Methods
	Dynamic Performance Analysis Methods
	Model checking methods

	Functional Verification of MPSoCs

	Specifying Semantics
	Domain-specific Modeling Language
	The Semantics of ``Semantics"
	Semantic Domain
	Model of Computation
	Structural Semantics
	Operational Semantics
	Denotational Semantics
	Axiomatic Semantics

	Specifying Domain-specific Modeling Languages by Meta-modeling
	Stopwatch and Timed Automata

	A Formal Semantic Domain for Distributed Real-time Embedded Systems
	The Alderis Domain-specific Modeling Language
	Abstract Syntax

	Specifying the Alderis Domain-specific Modeling Language by Meta-modeling
	Specifying the DRE Semantic Domain by Timed Automata
	Timers
	Non-preemptable Tasks
	Preemptable Tasks
	Event Channels
	Buffers
	The Scheduler
	Modeling Constraints

	Specifying the DRE Semantic Domain as a Discrete Event System
	Events
	Task States, Schedulers

	Real-time Model Checking of Software-Intensive Distributed Real-time Embedded Systems
	Problem Formulation
	Boeing Bold Stroke Execution Platform
	Abstractions Based on the Threading Model
	Non-preemptive Boeing Bold Stroke Application
	Real-time Verification by Timed Automata Model Checking
	Concluding Remarks

	Performance Estimation of Distributed Real-time Embedded Systems by Discrete Event Simulations
	Problem Formulation
	Performance Estimation of DRE Systems by Discrete Event Simulations
	Event Order Tree
	Branches in the Event Order Tree
	Real-time Verification by Discrete Event Simulations
	On-the-fly Detection of Branching Points in the Event Order Tree

	Practical Application to Software-Intensive DRE Systems
	Comparison with Random Simulations
	Comparison with Timed Automata Model Checking Methods

	Practical Application to an H.264 Decoder MPSoC Design
	H.264/AVC Overview
	H.264 Decoder MPSoC Design
	Performance Parameters for the H.264 Decoder MPSoC Design
	Formal Modeling of the H.264 Decoder MPSoC Design
	Performance Verification of the H.264 Decoder MPSoC Design by DES

	Concluding Remarks

	Conservative Approximation Method for the Real-time Verification of Preemptive Systems
	Problem Formulation
	Stopwatch as a Model for a Preemptable Real-time Task
	Composable Stopwatch Automata as a Model for PEARSE
	Problem Description

	Conservative Approximation of Integration Graphs
	Mapping the TSA to TTA
	Analysis of the Timed Automaton Approximation
	Language Inclusion Problem for a Single TTA/TSA Pair
	The Effects of Composing TTA on the Approximation

	Practical Application
	Concluding remarks

	Combining Transaction-level Simulations and Model Checking for MPSoC Verification and Performance Evaluation
	Formal Modeling of the AMBA AHB protocol
	Modeling AMBA AHB by Finite State Machines
	Modeling AMBA AHB Masters
	Modeling AMBA AHB Slaves
	Modeling an AMBA AHB Round-robin Arbiter

	Digital Camera MPSoC Design Alternatives
	JPEG2000 Encoder Description
	Description of MPSoC Design Alternatives

	Functional Verification of AMBA-based MPSoC Designs
	Ambiguity in the AMBA AHB Specification
	Resolving the Ambiguity

	Performance Evaluation of AMBA-based MPSoC Designs
	Simulation-based Evaluation
	Model Checking-based Performance Evaluation
	Evaluating the Performance Estimation Results
	The Impact of Transaction-level Simulations and Model Checking on the Accuracy of the Performance Estimates

	Cross-abstraction Real-time Analysis of Bus Matrix MPSoC Designs
	Networking Router MPSoC Design
	Modeling Bus Matrix-based MPSoC Designs
	Modeling the Router MPSoC using Alderis

	Functional Verification of AMBA AHB Bus Matrix MPSoC Designs
	Experiments

	Formal Performance Estimation by Discrete Event Simulations
	Experiments

	Real-time Verification using Timed Automata
	Experiments

	Comparing the Results of the Analysis Methods

	Simulation-guided Model Checking: The Dream framework
	Functionality Provided by Dream
	Random Simulations
	Real-time Verification of Non-preemptive DRE Systems by Timed Automata
	Performance Estimation and Real-time Verification by DES
	Real-time Verification of Preemptive DRE Systems by Timed Automata
	Task Mapping Problem on a Distributed Platform by Genetic Algorithms

	Design and Implementation

	Concluding Remarks and Future Work
	Challenges in the Design of Distributed Real-time Embedded Systems
	Key Technical Contributions of this Dissertation
	Future Directions

